
Math 351 Notes

Instructor Arkady Etkin

Open Sets and Closed Sets

Before  we start our discussion of open and closed sets, let’s review some facts about 

sequences and subsequences and about equivalent metrics.

                 SUBSEQUENCES

Definition:  Given a sequence 8xn<
n=1
¥ , consider a sequence 8nk<

k=1
¥  of positive integers, 

such that n1 < n2 < n3 < ... . Then the sequence 9xn
k
=
k=1

¥
 is called a subsequence of xn.

Example:

Let M = ;Î, Ì, Ï?. Suppose 8xn<
n=1
¥ Ì M  is defined by

      xn =

Ì if n = 3 p

Î if n = 3 p + 1

Ï if n = 3 p + 2

Let 8nk<
k=1
¥  be given by nk = 3 k. What is 9xn

k
=
k=1

¥
?

Solution:

Notice that n1 = 3, n2 = 6, n3 = 9, etc.

So xn1
= x3 = Ì ,  xn2

= x6 = Ì,  and  xn3
= x9 = Ì,  etc.

Thus, 9xn
k
=
k=1

¥
 is the constant sequence 9Ì=

k=1

¥
. Ù

Example: Let 8xn<
n=1
¥ = 9 1

n
=
n=1

¥
. 

a) Suppose 8nk<
k=1
¥ = 82 k + 1<

k=1
¥ . What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 8x2 k+1<

k=1
¥ = 9 1

2 k+1
=
k=1

¥
= 9 1

3
,

1

5
,

1

7
, ...= .   ª

b) Suppose 8nk<
k=1
¥ = 92k=

k=1

¥
. What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 9x

2k=
k=1

¥
= 9 1

2k
=
k=1

¥
= 9 1

2
,

1

4
,

1

8
, ...=.    ª

c) Suppose 8nk<
k=1
¥ = 82, 1, 3, 4, 5, 6, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

2
, 1,

1

3
,

1

4
, ...=. This sequence does not match the order of 8xn< and therefore 

fails to be a subsequence. Notice that n1 = 2 > 1 = n2.   ª

d) Suppose 8nk<
k=1
¥ = 84, 2, 8, 6, 12, 10, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

4
,

1

2
,

1

8
,

1

6
,

1

12
,

1

10
, ...=. This sequence does not match the order of 8xn< and 

therefore fails to be a subsequence of 8xn<. In particular 8nk<
k=1
¥  is not an increasing 

sequence of positive integers.   ª Ù

Note: Subsequences are useful tools that will later help us to describe such important 

concepts like completeness and compactness. For now however, we will have to be satis-

fied with the simple analysis of the relationship between subsequences, convergence, 

and Cauchy sequences. 

 

• Proposition:

If xn Ì
d

x, then xn
k

Ì
d

x for any subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ .

 

Proof:

We must show that for any Ε > 0, there exists K > 0 such that dIxn
k
, xM < Ε  whenever 

k ³ K.

Since xn Ì
d

x, we know that dHxn, xL < Ε  whenever n ³ N . Setting K = N , notice that 

nk ³ K. Thus, when k ³ N , we have dIxn
k
, xM < Ε . à

• Proposition:

A Cauchy sequence with a convergent subsequence converges.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is a convergent subsequence with 

xn
k

Ì
d

x. We must show that xn Ì
d

x. 

For Ε > 0, let N1 be such that dHxn, xmL <
Ε

2
 whenever n, m ³ N1. Also let N2 be such that 

dIxn
k
, xM <

Ε

2
 whenever k ³ N2. Now let N = max 8N1, N2<. 

If n, m > N , then 

              dHxn, xnmL £ dHxn, xmL <
Ε

2
      and       dHxnm, xL <

Ε

2
 .

Thus,

      dHxn, xL £ dHxn, xnm
L + dHxnm

, xL
           £ dHxn, xmL + dHxnm

, xL

           <
Ε

2
+

Ε

2
= Ε . à

 

• Proposition:

Every subsequence of a Cauchy sequence is itself a Cauchy sequence.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is any  subsequence. For Ε > 0, there is 

some N > 0 such that dHxn, xmL < Ε  whenever n, m ³ N . Notice that nn ³ n and nm ³ m. 

Thus dHxnn
, xnm

L < Ε. à

 

• Proposition:

If every subsequence of 8xn<
n=1
¥  has a further subsequence that converges to x, then 

8xn<
n=1
¥  converges to x.

 

Proof:

Suppose that 8xn<
n=1
¥  does not converge to x, but that every subsequence of 8xn<

n=1
¥  has a 

further subsequence, which converges to x.

If xn Ì
not

x (i.e. if xn does not converge to x), then infinitely many elements of the 

sequence 8xn<
n=1
¥  are further from x than some Ε > 0. That is, the set A = 8xn : dHxn, xL ³ Ε< 

is infinite if Ε is small enough. 

Notice that the elements of A form a subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ . Our assumption 

dictates that some further subsequence 9xn
kt

=
t=1

¥
 converges to x. But all the elements of 

9xn
kt

=
t=1

¥
 are elements of A.

In other words, dIxn
kt
, xM ³ Ε " t Î N, implying that xn

kt
Ì
not

x . (ÞÜ)         à

     EQUIVALENT METRICS

We have already seen that the metric at hand determines which sequences are Cauchy 

and which sequences converge. Later we will see that the convergent sequences in 

HM , dL in turn determine the open and closed sets of HM , dL and therefore the continous 

functions on HM , dL.
Given another metric function Ρ, we have generally no reason to expect the metric spaces 

HM , dL and HM , ΡL to have the same convergent sequences. In this section we would like 

to say a few words about metric functions that generate the same convergent sequences.

Definition: Two metrics d and Ρ on a set M  are said to be equivalent metrics if they 

generate the same convergent sequences: that is, dHxn, xL Ì 0  iff ΡHxn, xL Ì 0.

It might be comforting to know that most metric functions on R (or @0, ¥L) hetherto 

considered are equivalent metrics. The following proposition explains why.

• Proposition:

Let d be a metric on M  and suppose that  Ρ is defined by ΡHx, yL = f HdHx, yLL, where 

f : @0, ¥L�@0, ¥L satisfies the following three properties:

i) f HtL ³ 0 with equality iff t = 0.

ii) f ¢HtL > 0  for t Î H0, ¥L

iii) f ¢¢HtL < 0  for t Î H0, ¥L 
Then d and Ρ are equivalent. 

 

Proof:

Notice that f  is continuous and invertible. Since f ¢HtL > 0, we may state that f -1 is differ-

entiable and therefore continuous. 

Next, we need to observe that if g : U Ì R�R is continuous at 0, then for any sequence 

8tn<
n=1
¥ Ì U with tn Ì 0, we have gHtnL Ì gH0L (this will be discussed later on when we 

consider continuous functions and identify their properties).

Now suppose that 8xn<
n=1
¥ Ì M  with xn Ì

d

x. Then dHxn, xL Ì 0. Since f  is continuous, 

we see that f HdHxn, xLL Ì f H0L = 0 by setting tn = dHxn, xL. 
Thus,

 dHxn, xL Ì 0 � f HdHxn, xLL = ΡHxn, xL Ì 0.

On the other hand, if ΡHxn, xL Ì 0, then dHxn, xL = f -1HΡHxn, xLL Ì 0 because f -1 is also 

continuous at 0. We have thus established that dHxn, xL Ì 0  iff ΡHxn, xL Ì 0. Hence 

d and Ρ are equivalent.    à

Example:

The following are all equivalent metrics on R:

• dHx, yL =  x - y¤        • ΡHx, yL =  x - y¤        • ¶Hx, yL =
 x- y¤

1+ x- y¤

• ΖHx, yL = lnH x - y¤ + 1L       • jHx, yL =
lnH x- y¤+1L

1+ lnH x- y¤+1L
Ù

Note: Equivalent metrics preserve convergent sequences. Must they also have the same 

cauchy sequences? The answer is NO, as we can verify in the following example.

Example:

Let M = H0, ¥L. Then dHx, yL =  x - y¤ and ΡHx, yL = ¢ 1

x
-

1

y
¦ are equivalent metrics on M  

that do not generate the same Cauchy sequences. 

To see that d and Ρ are equivalent, observe that the function f HtL =
1

t
 is continuous on 

H0, ¥L. Notice also that f -1HtL = f HtL. That is, f  is its own inverse. 

Now, if xn Ì
d

x, then f HxnL Ì f HxL, or   f HxnL - f HxL¤ Ì 0. Hence xn Ì
d

x implies that 

¢ 1

xn

-
1

x
¦ Ì 0 or xn Ì

Ρ

x . 

On the other hand, xn Ì
Ρ

x implies that f -1HxnL Ì f -1HxL. 
That is, 

xn Ì
Ρ

x � ¡ f -1HxnL - f -1HxL¥ = ¢ 1

xn

-
1

x
¦ Ì 0 .

This in turn implies that ¢ f J 1

xn

M - f J 1

x
M¦ =  xn - x¤ Ì 0.

Thus we have shown that d and Ρ are equivalent.  ª

To see that d and Ρ fail to generate the same Cauchy sequences, notice that : 1

n
>

n=1

¥

 is a 

Cauchy sequence when it is considered under the metric dHx, yL =  x - y¤. Under the 

metric Ρ however, ΡJ 1

n
,

1

m
N =  n - m¤ ³ 1 if m ¹ n. 

Thus : 1

n
>

n=1

¥

 is not Cauchy under Ρ.   ª   Ù

Example:

Let M = R
n. 

Then d1Hx, yL = ÈÈ x - y ÈÈ1 , d2Hx, yL = ÈÈ x - y ÈÈ2 , and d¥Hx, yL = ÈÈ x - y ÈÈ¥  are all equiva-

lent metrics on Rn because

      ÈÈ x - y ÈÈ¥ £ ÈÈ x - y ÈÈ2 £ ÈÈ x - y ÈÈ1
while

 ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ¥    and   ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ2. 

We should verify that d1, d2, and d3 all generate the same Cauchy sequences 

on Rn.              Ù

The last example is very important as it allows us to make the following definition:

Definition: Given two metric spaces HM , dL and HN , ΡL, we can define a metric on the 

product M ´ N  in a variety of ways. Our only requirement is that a sequence of pairs 

Han, xnL in M ´ N  should converge precisely when both coordinate sequences 8an<
n=1
¥ and 

8xn<
n=1
¥  converge in HM , dL and HN , ΡL, respectively.

Each of the following define metrics on M ´ N  that enjoy this property. Moreover, they 

are equivalent :

• d1HHa, xL, Hb, yLL = dHa, bL + ΡHx, yL

• d2HHa, xL, Hb, yLL = IdHa, bL2 + ΡHx, yL2M1�2

• d¥HHa, xL, Hb, yLL = max 8dHa, bL, ΡHx, yL<
Henceforth, any implicit reference to “the” metric on M ´ N , sometimes called the prod-

uct metric, will mean one of d1, d2, or d¥. Any one of them will serve equally well. 

               OPEN SETS

Definition: A set U in a metric space HM , dL is called an open set if  U contains a neigh-

borhood of each of its points. In other words, U is an open set if, given x Î U, there is 

some Ε > 0 such that BΕHxL Ì U.

Example:  

a) In any metric space, the whole space M  is an open set. The empty set Æ is also open 

(by default). 

b) In R, any open interval is an open set. Indeed, given x Î Ha, bL, let Ε = min 8x - a, b - x<. 
Then Ε > 0  and Hx - Ε, x + ΕL Ì Ha, bL. The cases Ha, ¥L and H-¥, bL are similar. 

While we’re at it, notice that the interval @0, 1L, for example, is not open in R because it 

does not contain an entire neighborhood of 0.

c) In a discrete space, B1HxL = 8x< is an open set for any x. It follows that every subset of a 

discrete space is open. Ù

Before we get too carried away, we should follow the lead suggested by the last example 

and check that every open ball is in fact an open set.

• Proposition:

For any x Î M  and any Ε > 0, the open ball BΕHxL is an open set.

Proof:

Consult the drawing below to understand the motivation behind the argument of the 

proof.

                 

Let y Î BΕHxL. Then dHx, yL < Ε  and hence ∆ = Ε - dHx, yL > 0.

We will show that B∆H yL Ì BΕHxL. 
Indeed, if dH y, zL < ∆, then, by the triangle inequality

            dHx, zL £ dHx, yL + dH y, zL < dHx, yL + ∆ = dHx, yL + Ε - dHx, yL = Ε.             à

Let’s collect our thoughts. First, every open ball is open. Next, it follows from the defini-

tion of open sets that an open set must actually be a union of open balls . In fact, if  U is 

open, then U = Ü8BΕHxL : BΕHxL Ì U<. 
Moreover, any arbitrary union of open balls is again an open set. Here’s what all of this 

means:

• Theorem:

An arbitrary union of open sets is again open. That is, if 8UΑ<ΑÎA is any collection of open 

sets, then V = Ü
ΑÎA

UΑ is open.

Proof:

If x Î V , then x Î UΑ for some Α Î A. But then, since UΑ is open, BΕHxL Ì UΑ Ì V  for 

some Ε > 0. à

Intersections aren’t nearly as generous: 

• Theorem:

A finite intersection of open sets is open. That is, if each of  U1, … , Un is open, then so 

is V = U1 Ý … Ý Un . 

Proof:

If x Î V , then x Î Ui for all i = 1, … , n. Thus, for each i there is an ¶i > 0 such that 

BΕi
Ì Ui. But then, setting Ε = min 8Ε1, ..., Εn< > 0, we have BΕHxL Ì Ý

i=1

n

Ui = V .    à

Example: 

The word “finite” is crucial in the above theorem because Ý
n=1

¥

J-
1

n
,

1

n
N = 80< , and 80< is 

not open in R. Ù

Now, since the real line R is of special interest to us, let’s characterize the open subsets 

of  R . This will come in handy later. But it should be stressed that while this characteriza-

tion holds for  R, it does not have a satisfactory analogue even in R2 . (As we will see in a 

later chapter, not every open set in the plane can be written as a union of disjoint open 

disks.)

• Theorem:

If U is an open subset of R, then U may be written as a countable union of disjoint open 

intervals. That is, U = Ü
n=1

¥

In , where In = Han, bnL (these may be unbounded) and 

In Ý Im = Æ for n ¹ m.

Proof:

We know that U can be written as a union of open intervals (because each x Î U is in 

some open interval I with I Ì U). What we need to show is that U is a union of disjoint 

open intervals (such a union must be countable(to see why, check exercise 2.15 on 

Carother’s)) . 

We first claim that each x Î U is contained in a maximal open interval Ix Ì U in the 

sense that if x Î I Ì U , where I is an open interval, then we must have I Ì Ix. Indeed, 

given x Î U, let 

       ax = inf 8a : Ha, xD Ì U<     and     bx = sup 8b : @x, bM Ì U= .

Then, Ix = Hax, bxL satisfies x Î Ix Ì U, and Ix is clearly maximal. (Check this!) 

Next, notice that for any x, y Î U we have either Ix Ý Iy = Æ  or Ix = Iy. Why? Because if 

Ix Ý Iy ¹ Æ , then Ix Ü Iy is an open interval containing both Ix and Iy. By maximality we 

would then have Ix = Iy. It follows then that U is the union of disjoint (maximal) inter-

vals: U = Ü
xÎU

Ix . à

Now any time we make up a new definition in a metric space setting, it is usually very 

helpful to find an equivalent version stated exclusively in terms of sequences. To moti-

vate this in the particular case of open sets, let’s recall:

           xn Ì x � 8xn< is eventually in BΕHxL for any Ε > 0

and hence

            xn Ì x � 8xn< is eventually in U, for any open set U containing x .

This last statements essentially characterizes open sets:

• Theorem:

A set U in HM , dL is open iff, whenever a sequence 8xn<
n=1
¥  in M  converges to a point 

x Î U, we have xn Î U for all but finitely many n. 

Proof:

The forward implication is clear from the remarks preceding the theorem. Let’s see why 

the new condition implies that U is open:

If U is not open , then there is an x Î U such that BΕHxL Ý Uc ¹ Æ for all ¶ > 0. In particu-

lar , for each n there is some xn Î B1�nHxL Ý Uc. But then 8xn<
n=1
¥ Ì Uc and xn Ì x. Thus, 

the new condition also fails.(ÞÜ) à

In slightly different language, the above theorem is saying that the only way to reach a 

member of an open set is by traveling well inside the set; there are no inhabitants on the 

“frontier.” In essence, you cannot visit a single resident without seeing a whole neighbor-

hood!

  CLOSED SETS

Definition: A set F in a metric space HM , dL is said to be a closed set if its complement 

Fc = M\F is open. 

We can draw several immediate (although not terribly enlightening) conclusions:

Example:  

a) Ø  and M  are always closed. (This means that it is possible for a set to be both open 

and closed!) 

b) An arbitrary intersection of closed sets is closed. A finite union of closed sets is closed.

c) Any finite set is closed. Indeed, it is enough to show that 8x< is always closed. (Why?) 

Given any y Î M\8x< (that is, any y ¹ x), note that ¶ = dHx, yL > 0, and hence 

BΕH yL Ì M\8x<. 

d) In R, each of the intervals @a, bD, @a, ¥L, and H-¥, bD is closed. Also, N and D (the Can-

tor set, which we’ll study very soon) are closed sets. (Why?) 

e) In a discrete space, every subset is closed.

f) Sets are not “doors”! For instance, H0, 1D is neither open nor closed in R! (What??)

Ù

As yet, our definition is not terribly useful. It would be nice if we had an intrinsic charac-

terization of closed sets (something that did not depend on a knowledge of open sets), 

something in terms of sequences, for example. For this let’s first make an observation: F 

is closed iff Fc is open.

So F is closed iff

          x Î Fc � BΕHxL Ì Fc     for some Ε > 0 .

But this is the same as saying: F is closed iff

        BΕHxL Ý F ¹ Æ   for every Ε > 0 � x Î F .

        

This is our first characterization of closed sets. Intuitively speaking, closed sets are like 

blobs from a 60’s horror movie. A closed set will devour all points that reside in arbitrary 

proximity to the set.

                      

In order to better understand the nature of these “predatory” sets, let’s bring in a few 

definitions.

Definition: Let A be a subset of M . A point x Î M  is called a limit point of A if every 

neighborhood of x contains a point of A that is different from x itself, that is, if 

HBΕHxL\8x<L Ý A ¹ Æ  for any Ε > 0.

Example:  

a) Suppose you place a sugar cube, a cherry, and a queen-ant around an ant nest. Several 

moments later you take a snapshot of the event that ensues:

                

If we let A be the set of all ants in the picture, then the sugar cube, the cherry, and the 

queen-ant are all limit points of A (assuming that infinitely many ants cluster tighter and 

tighter around each object). Notice that s (sugar) and c (cherry) are not members of A, 

whereas Q Î A.

b) Let A = 8xn<
n=1
¥ Ì M  and suppose xn Ì

d

x Î M . Then x is the only limit point of A.

Note however, that a non-convergent sequence can have a huge number of limit points. 

For instance, let Q be arranged into a sequence 8rn<
n=1
¥ . Then every point of R is a limit 

point of Q. Ù

Definition: A set F is a closed set iff it contains all of its limits points.

Example:  

Let Z be the set of all zombies. Is Z a closed set?

Solution:

To answer this question, we must decide whether Z contains all of its limit points. To 

put this problem in “life or death” terms, suppose x is a limit point of Z. Then, would 

you shoot x with your sniper rifle?

               

If the concentric circles of the sniper scope never present the target in isolation, that is, 

if the heads of other zombies are always present within each target’s circle (no matter 

how small it is), then the target is a limit point of zombies. It will inevitably be “in con-

tact” with the living dead and therefore become a zombie (if it is not already a zombie). 

Therefore it appears that Z is a closed set (and that shooting the target might be the 

most humane course of action). Ù

Notice that the characterization of closed sets in terms of limit points can readily be 

translated into a sequential description. To see why, suppose x is a limit point of some 

set F. Then, by definition, BΕHxL Ý F ¹ Æ for every Ε > 0. But this means that for each 

1 � n, we can find some xn Î B1�nHxL Ý F. 

Thus, the sequence 8xn<
n=1
¥ Ì F converges to x. In other words, any limit point of F is 

necessarily a point of convergence of some sequence of elements of F.

This means that F is closed iff every sequence 8xn<
n=1
¥  that consists of elements of F and 

converges in M É F, must actually converge to an element of F.

We summarize our results in the following theorem:

• Theorem:

Given a set F in HM , dL, the following are equivalent: 

(i) F is closed; that is, Fc = M\F is open.

(ii) If BΕHxL Ý F ¹ Æ for every ¶ > 0, then x Î F. 

(iii) If a sequence 8xn<
n=1
¥ Ì F converges to some point x Î M , then x Î F.

Proof:

(i)�(ii): This is clear from our observations above and the definition of an open set. 

(ii)�(iii): Suppose that 8xn<
n=1
¥ Ì F and xn Ì

d

x Î M  . Then BΕHxL contains infinitely 

many xn for any ¶ > 0, and hence BΕHxL Ý F ¹ Æ for any ¶ > 0. Thus, x Î F by (ii).

(iii)�(ii): If BΕHxL Ý F ¹ Æ for all ¶ > 0, then for each n there is an xn Î B1�nHxL Ý F. The 

sequence 8xn<
n=1
¥  satisfies 8xn<

n=1
¥ Ì F and xn Ì x. Hence, x Î F by (iii).      à

Note: Most authors take (iii) as the definition of a closed set . In other words, condition 

(iii) says that a closed set must contain all of its limit points. That is, “closed” means 

closed under the operation of taking of limits.

Now, as we’ve seen, some sets are neither open nor closed. However, it is possible to 

describe the “open part” of a set and the “closure” of a set. Here’s what we’ll do: 

Definition: Given a set A in HM , dL, we define the interior of A, written intHAL or Ao, to 

be the largest open set contained in A. 

That is,

          

Note that Ao is clearly an open subset of A. 

We next define the closure of A, written clHAL or A , to be the smallest closed set contain-

ing A. That is, 

    clHAL = A = Ý8F : F is closed and A Ì F< .

Please take note of the “dual” nature of our two new definitions. Now it is clear that A is 

a closed set containing A (and necessarily the smallest one). But it’s not so clear which 

points are in A or, more precisely, which points are in A\A. 

We could use a description of A that is a little easier to “test” on a given set A. It follows 

from our last theorem that x Î A iff  BΕHxL Ý A ¹ Æ for every ¶ > 0. The description that 

we are looking for simply removes this last reference to A.

• Proposition:

x Î A iff BΕHxL Ý A ¹ Æ for every ¶ > 0. 

Proof:

(Ü)

If BΕHxL Ý A ¹ Æ for every ¶ > 0, then BΕHxL Ý A ¹ Æ for every ¶ > 0 (since A Ì A), and 

hence x Î A (since closed sets contain their limit points) . 

(Þ)

Now let x Î A and let ¶ > 0. If BΕHxL Ý A = Æ, then A is a subset of HBΕHxLLc, a closed set. 

Thus, A Ì BΕHHxLLc. (Why?) But this is a contradiction, because x Î A while x Ï HBΕHxLLc.(Þ

Ü) à

• Corollary:

x Î A iff there is a sequence 8xn<
n=1
¥ Ì A with xn Ì x.

That is, A is the set of all limits of convergent sequences in A (including limits of con-

stant sequences).

Example:

In HR,   × ¤L:

a)  intHH0, 1DL = H0, 1L       and      clHH0, 1DL = @0, 1D

b)  intJ: 1

n
>

n=1

¥

N = Æ          and      clJ: 1

n
>

n=1

¥

N = : 1

n
>

n=1

¥

Ü 80<

c)  intHQL = Æ                   and      clHQL = R Ù



Before  we start our discussion of open and closed sets, let’s review some facts about 

sequences and subsequences and about equivalent metrics.

                 SUBSEQUENCES

Definition:  Given a sequence 8xn<
n=1
¥ , consider a sequence 8nk<

k=1
¥  of positive integers, 

such that n1 < n2 < n3 < ... . Then the sequence 9xn
k
=
k=1

¥
 is called a subsequence of xn.

Example:

Let M = ;Î, Ì, Ï?. Suppose 8xn<
n=1
¥ Ì M  is defined by

      xn =

Ì if n = 3 p

Î if n = 3 p + 1

Ï if n = 3 p + 2

Let 8nk<
k=1
¥  be given by nk = 3 k. What is 9xn

k
=
k=1

¥
?

Solution:

Notice that n1 = 3, n2 = 6, n3 = 9, etc.

So xn1
= x3 = Ì ,  xn2

= x6 = Ì,  and  xn3
= x9 = Ì,  etc.

Thus, 9xn
k
=
k=1

¥
 is the constant sequence 9Ì=

k=1

¥
. Ù

Example: Let 8xn<
n=1
¥ = 9 1

n
=
n=1

¥
. 

a) Suppose 8nk<
k=1
¥ = 82 k + 1<

k=1
¥ . What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 8x2 k+1<

k=1
¥ = 9 1

2 k+1
=
k=1

¥
= 9 1

3
,

1

5
,

1

7
, ...= .   ª

b) Suppose 8nk<
k=1
¥ = 92k=

k=1

¥
. What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 9x

2k=
k=1

¥
= 9 1

2k
=
k=1

¥
= 9 1

2
,

1

4
,

1

8
, ...=.    ª

c) Suppose 8nk<
k=1
¥ = 82, 1, 3, 4, 5, 6, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

2
, 1,

1

3
,

1

4
, ...=. This sequence does not match the order of 8xn< and therefore 

fails to be a subsequence. Notice that n1 = 2 > 1 = n2.   ª

d) Suppose 8nk<
k=1
¥ = 84, 2, 8, 6, 12, 10, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

4
,

1

2
,

1

8
,

1

6
,

1

12
,

1

10
, ...=. This sequence does not match the order of 8xn< and 

therefore fails to be a subsequence of 8xn<. In particular 8nk<
k=1
¥  is not an increasing 

sequence of positive integers.   ª Ù

Note: Subsequences are useful tools that will later help us to describe such important 

concepts like completeness and compactness. For now however, we will have to be satis-

fied with the simple analysis of the relationship between subsequences, convergence, 

and Cauchy sequences. 

 

• Proposition:

If xn Ì
d

x, then xn
k

Ì
d

x for any subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ .

 

Proof:

We must show that for any Ε > 0, there exists K > 0 such that dIxn
k
, xM < Ε  whenever 

k ³ K.

Since xn Ì
d

x, we know that dHxn, xL < Ε  whenever n ³ N . Setting K = N , notice that 

nk ³ K. Thus, when k ³ N , we have dIxn
k
, xM < Ε . à

• Proposition:

A Cauchy sequence with a convergent subsequence converges.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is a convergent subsequence with 

xn
k

Ì
d

x. We must show that xn Ì
d

x. 

For Ε > 0, let N1 be such that dHxn, xmL <
Ε

2
 whenever n, m ³ N1. Also let N2 be such that 

dIxn
k
, xM <

Ε

2
 whenever k ³ N2. Now let N = max 8N1, N2<. 

If n, m > N , then 

              dHxn, xnmL £ dHxn, xmL <
Ε

2
      and       dHxnm, xL <

Ε

2
 .

Thus,

      dHxn, xL £ dHxn, xnm
L + dHxnm

, xL
           £ dHxn, xmL + dHxnm

, xL

           <
Ε

2
+

Ε

2
= Ε . à

 

• Proposition:

Every subsequence of a Cauchy sequence is itself a Cauchy sequence.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is any  subsequence. For Ε > 0, there is 

some N > 0 such that dHxn, xmL < Ε  whenever n, m ³ N . Notice that nn ³ n and nm ³ m. 

Thus dHxnn
, xnm

L < Ε. à

 

• Proposition:

If every subsequence of 8xn<
n=1
¥  has a further subsequence that converges to x, then 

8xn<
n=1
¥  converges to x.

 

Proof:

Suppose that 8xn<
n=1
¥  does not converge to x, but that every subsequence of 8xn<

n=1
¥  has a 

further subsequence, which converges to x.

If xn Ì
not

x (i.e. if xn does not converge to x), then infinitely many elements of the 

sequence 8xn<
n=1
¥  are further from x than some Ε > 0. That is, the set A = 8xn : dHxn, xL ³ Ε< 

is infinite if Ε is small enough. 

Notice that the elements of A form a subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ . Our assumption 

dictates that some further subsequence 9xn
kt

=
t=1

¥
 converges to x. But all the elements of 

9xn
kt

=
t=1

¥
 are elements of A.

In other words, dIxn
kt
, xM ³ Ε " t Î N, implying that xn

kt
Ì
not

x . (ÞÜ)         à

     EQUIVALENT METRICS

We have already seen that the metric at hand determines which sequences are Cauchy 

and which sequences converge. Later we will see that the convergent sequences in 

HM , dL in turn determine the open and closed sets of HM , dL and therefore the continous 

functions on HM , dL.
Given another metric function Ρ, we have generally no reason to expect the metric spaces 

HM , dL and HM , ΡL to have the same convergent sequences. In this section we would like 

to say a few words about metric functions that generate the same convergent sequences.

Definition: Two metrics d and Ρ on a set M  are said to be equivalent metrics if they 

generate the same convergent sequences: that is, dHxn, xL Ì 0  iff ΡHxn, xL Ì 0.

It might be comforting to know that most metric functions on R (or @0, ¥L) hetherto 

considered are equivalent metrics. The following proposition explains why.

• Proposition:

Let d be a metric on M  and suppose that  Ρ is defined by ΡHx, yL = f HdHx, yLL, where 

f : @0, ¥L�@0, ¥L satisfies the following three properties:

i) f HtL ³ 0 with equality iff t = 0.

ii) f ¢HtL > 0  for t Î H0, ¥L

iii) f ¢¢HtL < 0  for t Î H0, ¥L 
Then d and Ρ are equivalent. 

 

Proof:

Notice that f  is continuous and invertible. Since f ¢HtL > 0, we may state that f -1 is differ-

entiable and therefore continuous. 

Next, we need to observe that if g : U Ì R�R is continuous at 0, then for any sequence 

8tn<
n=1
¥ Ì U with tn Ì 0, we have gHtnL Ì gH0L (this will be discussed later on when we 

consider continuous functions and identify their properties).

Now suppose that 8xn<
n=1
¥ Ì M  with xn Ì

d

x. Then dHxn, xL Ì 0. Since f  is continuous, 

we see that f HdHxn, xLL Ì f H0L = 0 by setting tn = dHxn, xL. 
Thus,

 dHxn, xL Ì 0 � f HdHxn, xLL = ΡHxn, xL Ì 0.

On the other hand, if ΡHxn, xL Ì 0, then dHxn, xL = f -1HΡHxn, xLL Ì 0 because f -1 is also 

continuous at 0. We have thus established that dHxn, xL Ì 0  iff ΡHxn, xL Ì 0. Hence 

d and Ρ are equivalent.    à

Example:

The following are all equivalent metrics on R:

• dHx, yL =  x - y¤        • ΡHx, yL =  x - y¤        • ¶Hx, yL =
 x- y¤

1+ x- y¤

• ΖHx, yL = lnH x - y¤ + 1L       • jHx, yL =
lnH x- y¤+1L

1+ lnH x- y¤+1L
Ù

Note: Equivalent metrics preserve convergent sequences. Must they also have the same 

cauchy sequences? The answer is NO, as we can verify in the following example.

Example:

Let M = H0, ¥L. Then dHx, yL =  x - y¤ and ΡHx, yL = ¢ 1

x
-

1

y
¦ are equivalent metrics on M  

that do not generate the same Cauchy sequences. 

To see that d and Ρ are equivalent, observe that the function f HtL =
1

t
 is continuous on 

H0, ¥L. Notice also that f -1HtL = f HtL. That is, f  is its own inverse. 

Now, if xn Ì
d

x, then f HxnL Ì f HxL, or   f HxnL - f HxL¤ Ì 0. Hence xn Ì
d

x implies that 

¢ 1

xn

-
1

x
¦ Ì 0 or xn Ì

Ρ

x . 

On the other hand, xn Ì
Ρ

x implies that f -1HxnL Ì f -1HxL. 
That is, 

xn Ì
Ρ

x � ¡ f -1HxnL - f -1HxL¥ = ¢ 1

xn

-
1

x
¦ Ì 0 .

This in turn implies that ¢ f J 1

xn

M - f J 1

x
M¦ =  xn - x¤ Ì 0.

Thus we have shown that d and Ρ are equivalent.  ª

To see that d and Ρ fail to generate the same Cauchy sequences, notice that : 1

n
>

n=1

¥

 is a 

Cauchy sequence when it is considered under the metric dHx, yL =  x - y¤. Under the 

metric Ρ however, ΡJ 1

n
,

1

m
N =  n - m¤ ³ 1 if m ¹ n. 

Thus : 1

n
>

n=1

¥

 is not Cauchy under Ρ.   ª   Ù

Example:

Let M = R
n. 

Then d1Hx, yL = ÈÈ x - y ÈÈ1 , d2Hx, yL = ÈÈ x - y ÈÈ2 , and d¥Hx, yL = ÈÈ x - y ÈÈ¥  are all equiva-

lent metrics on Rn because

      ÈÈ x - y ÈÈ¥ £ ÈÈ x - y ÈÈ2 £ ÈÈ x - y ÈÈ1
while

 ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ¥    and   ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ2. 

We should verify that d1, d2, and d3 all generate the same Cauchy sequences 

on Rn.              Ù

The last example is very important as it allows us to make the following definition:

Definition: Given two metric spaces HM , dL and HN , ΡL, we can define a metric on the 

product M ´ N  in a variety of ways. Our only requirement is that a sequence of pairs 

Han, xnL in M ´ N  should converge precisely when both coordinate sequences 8an<
n=1
¥ and 

8xn<
n=1
¥  converge in HM , dL and HN , ΡL, respectively.

Each of the following define metrics on M ´ N  that enjoy this property. Moreover, they 

are equivalent :

• d1HHa, xL, Hb, yLL = dHa, bL + ΡHx, yL

• d2HHa, xL, Hb, yLL = IdHa, bL2 + ΡHx, yL2M1�2

• d¥HHa, xL, Hb, yLL = max 8dHa, bL, ΡHx, yL<
Henceforth, any implicit reference to “the” metric on M ´ N , sometimes called the prod-

uct metric, will mean one of d1, d2, or d¥. Any one of them will serve equally well. 

               OPEN SETS

Definition: A set U in a metric space HM , dL is called an open set if  U contains a neigh-

borhood of each of its points. In other words, U is an open set if, given x Î U, there is 

some Ε > 0 such that BΕHxL Ì U.

Example:  

a) In any metric space, the whole space M  is an open set. The empty set Æ is also open 

(by default). 

b) In R, any open interval is an open set. Indeed, given x Î Ha, bL, let Ε = min 8x - a, b - x<. 
Then Ε > 0  and Hx - Ε, x + ΕL Ì Ha, bL. The cases Ha, ¥L and H-¥, bL are similar. 

While we’re at it, notice that the interval @0, 1L, for example, is not open in R because it 

does not contain an entire neighborhood of 0.

c) In a discrete space, B1HxL = 8x< is an open set for any x. It follows that every subset of a 

discrete space is open. Ù

Before we get too carried away, we should follow the lead suggested by the last example 

and check that every open ball is in fact an open set.

• Proposition:

For any x Î M  and any Ε > 0, the open ball BΕHxL is an open set.

Proof:

Consult the drawing below to understand the motivation behind the argument of the 

proof.

                 

Let y Î BΕHxL. Then dHx, yL < Ε  and hence ∆ = Ε - dHx, yL > 0.

We will show that B∆H yL Ì BΕHxL. 
Indeed, if dH y, zL < ∆, then, by the triangle inequality

            dHx, zL £ dHx, yL + dH y, zL < dHx, yL + ∆ = dHx, yL + Ε - dHx, yL = Ε.             à

Let’s collect our thoughts. First, every open ball is open. Next, it follows from the defini-

tion of open sets that an open set must actually be a union of open balls . In fact, if  U is 

open, then U = Ü8BΕHxL : BΕHxL Ì U<. 
Moreover, any arbitrary union of open balls is again an open set. Here’s what all of this 

means:

• Theorem:

An arbitrary union of open sets is again open. That is, if 8UΑ<ΑÎA is any collection of open 

sets, then V = Ü
ΑÎA

UΑ is open.

Proof:

If x Î V , then x Î UΑ for some Α Î A. But then, since UΑ is open, BΕHxL Ì UΑ Ì V  for 

some Ε > 0. à

Intersections aren’t nearly as generous: 

• Theorem:

A finite intersection of open sets is open. That is, if each of  U1, … , Un is open, then so 

is V = U1 Ý … Ý Un . 

Proof:

If x Î V , then x Î Ui for all i = 1, … , n. Thus, for each i there is an ¶i > 0 such that 

BΕi
Ì Ui. But then, setting Ε = min 8Ε1, ..., Εn< > 0, we have BΕHxL Ì Ý

i=1

n

Ui = V .    à

Example: 

The word “finite” is crucial in the above theorem because Ý
n=1

¥

J-
1

n
,

1

n
N = 80< , and 80< is 

not open in R. Ù

Now, since the real line R is of special interest to us, let’s characterize the open subsets 

of  R . This will come in handy later. But it should be stressed that while this characteriza-

tion holds for  R, it does not have a satisfactory analogue even in R2 . (As we will see in a 

later chapter, not every open set in the plane can be written as a union of disjoint open 

disks.)

• Theorem:

If U is an open subset of R, then U may be written as a countable union of disjoint open 

intervals. That is, U = Ü
n=1

¥

In , where In = Han, bnL (these may be unbounded) and 

In Ý Im = Æ for n ¹ m.

Proof:

We know that U can be written as a union of open intervals (because each x Î U is in 

some open interval I with I Ì U). What we need to show is that U is a union of disjoint 

open intervals (such a union must be countable(to see why, check exercise 2.15 on 

Carother’s)) . 

We first claim that each x Î U is contained in a maximal open interval Ix Ì U in the 

sense that if x Î I Ì U , where I is an open interval, then we must have I Ì Ix. Indeed, 

given x Î U, let 

       ax = inf 8a : Ha, xD Ì U<     and     bx = sup 8b : @x, bM Ì U= .

Then, Ix = Hax, bxL satisfies x Î Ix Ì U, and Ix is clearly maximal. (Check this!) 

Next, notice that for any x, y Î U we have either Ix Ý Iy = Æ  or Ix = Iy. Why? Because if 

Ix Ý Iy ¹ Æ , then Ix Ü Iy is an open interval containing both Ix and Iy. By maximality we 

would then have Ix = Iy. It follows then that U is the union of disjoint (maximal) inter-

vals: U = Ü
xÎU

Ix . à

Now any time we make up a new definition in a metric space setting, it is usually very 

helpful to find an equivalent version stated exclusively in terms of sequences. To moti-

vate this in the particular case of open sets, let’s recall:

           xn Ì x � 8xn< is eventually in BΕHxL for any Ε > 0

and hence

            xn Ì x � 8xn< is eventually in U, for any open set U containing x .

This last statements essentially characterizes open sets:

• Theorem:

A set U in HM , dL is open iff, whenever a sequence 8xn<
n=1
¥  in M  converges to a point 

x Î U, we have xn Î U for all but finitely many n. 

Proof:

The forward implication is clear from the remarks preceding the theorem. Let’s see why 

the new condition implies that U is open:

If U is not open , then there is an x Î U such that BΕHxL Ý Uc ¹ Æ for all ¶ > 0. In particu-

lar , for each n there is some xn Î B1�nHxL Ý Uc. But then 8xn<
n=1
¥ Ì Uc and xn Ì x. Thus, 

the new condition also fails.(ÞÜ) à

In slightly different language, the above theorem is saying that the only way to reach a 

member of an open set is by traveling well inside the set; there are no inhabitants on the 

“frontier.” In essence, you cannot visit a single resident without seeing a whole neighbor-

hood!

  CLOSED SETS

Definition: A set F in a metric space HM , dL is said to be a closed set if its complement 

Fc = M\F is open. 

We can draw several immediate (although not terribly enlightening) conclusions:

Example:  

a) Ø  and M  are always closed. (This means that it is possible for a set to be both open 

and closed!) 

b) An arbitrary intersection of closed sets is closed. A finite union of closed sets is closed.

c) Any finite set is closed. Indeed, it is enough to show that 8x< is always closed. (Why?) 

Given any y Î M\8x< (that is, any y ¹ x), note that ¶ = dHx, yL > 0, and hence 

BΕH yL Ì M\8x<. 

d) In R, each of the intervals @a, bD, @a, ¥L, and H-¥, bD is closed. Also, N and D (the Can-

tor set, which we’ll study very soon) are closed sets. (Why?) 

e) In a discrete space, every subset is closed.

f) Sets are not “doors”! For instance, H0, 1D is neither open nor closed in R! (What??)

Ù

As yet, our definition is not terribly useful. It would be nice if we had an intrinsic charac-

terization of closed sets (something that did not depend on a knowledge of open sets), 

something in terms of sequences, for example. For this let’s first make an observation: F 

is closed iff Fc is open.

So F is closed iff

          x Î Fc � BΕHxL Ì Fc     for some Ε > 0 .

But this is the same as saying: F is closed iff

        BΕHxL Ý F ¹ Æ   for every Ε > 0 � x Î F .

        

This is our first characterization of closed sets. Intuitively speaking, closed sets are like 

blobs from a 60’s horror movie. A closed set will devour all points that reside in arbitrary 

proximity to the set.

                      

In order to better understand the nature of these “predatory” sets, let’s bring in a few 

definitions.

Definition: Let A be a subset of M . A point x Î M  is called a limit point of A if every 

neighborhood of x contains a point of A that is different from x itself, that is, if 

HBΕHxL\8x<L Ý A ¹ Æ  for any Ε > 0.

Example:  

a) Suppose you place a sugar cube, a cherry, and a queen-ant around an ant nest. Several 

moments later you take a snapshot of the event that ensues:

                

If we let A be the set of all ants in the picture, then the sugar cube, the cherry, and the 

queen-ant are all limit points of A (assuming that infinitely many ants cluster tighter and 

tighter around each object). Notice that s (sugar) and c (cherry) are not members of A, 

whereas Q Î A.

b) Let A = 8xn<
n=1
¥ Ì M  and suppose xn Ì

d

x Î M . Then x is the only limit point of A.

Note however, that a non-convergent sequence can have a huge number of limit points. 

For instance, let Q be arranged into a sequence 8rn<
n=1
¥ . Then every point of R is a limit 

point of Q. Ù

Definition: A set F is a closed set iff it contains all of its limits points.

Example:  

Let Z be the set of all zombies. Is Z a closed set?

Solution:

To answer this question, we must decide whether Z contains all of its limit points. To 

put this problem in “life or death” terms, suppose x is a limit point of Z. Then, would 

you shoot x with your sniper rifle?

               

If the concentric circles of the sniper scope never present the target in isolation, that is, 

if the heads of other zombies are always present within each target’s circle (no matter 

how small it is), then the target is a limit point of zombies. It will inevitably be “in con-

tact” with the living dead and therefore become a zombie (if it is not already a zombie). 

Therefore it appears that Z is a closed set (and that shooting the target might be the 

most humane course of action). Ù

Notice that the characterization of closed sets in terms of limit points can readily be 

translated into a sequential description. To see why, suppose x is a limit point of some 

set F. Then, by definition, BΕHxL Ý F ¹ Æ for every Ε > 0. But this means that for each 

1 � n, we can find some xn Î B1�nHxL Ý F. 

Thus, the sequence 8xn<
n=1
¥ Ì F converges to x. In other words, any limit point of F is 

necessarily a point of convergence of some sequence of elements of F.

This means that F is closed iff every sequence 8xn<
n=1
¥  that consists of elements of F and 

converges in M É F, must actually converge to an element of F.

We summarize our results in the following theorem:

• Theorem:

Given a set F in HM , dL, the following are equivalent: 

(i) F is closed; that is, Fc = M\F is open.

(ii) If BΕHxL Ý F ¹ Æ for every ¶ > 0, then x Î F. 

(iii) If a sequence 8xn<
n=1
¥ Ì F converges to some point x Î M , then x Î F.

Proof:

(i)�(ii): This is clear from our observations above and the definition of an open set. 

(ii)�(iii): Suppose that 8xn<
n=1
¥ Ì F and xn Ì

d

x Î M  . Then BΕHxL contains infinitely 

many xn for any ¶ > 0, and hence BΕHxL Ý F ¹ Æ for any ¶ > 0. Thus, x Î F by (ii).

(iii)�(ii): If BΕHxL Ý F ¹ Æ for all ¶ > 0, then for each n there is an xn Î B1�nHxL Ý F. The 

sequence 8xn<
n=1
¥  satisfies 8xn<

n=1
¥ Ì F and xn Ì x. Hence, x Î F by (iii).      à

Note: Most authors take (iii) as the definition of a closed set . In other words, condition 

(iii) says that a closed set must contain all of its limit points. That is, “closed” means 

closed under the operation of taking of limits.

Now, as we’ve seen, some sets are neither open nor closed. However, it is possible to 

describe the “open part” of a set and the “closure” of a set. Here’s what we’ll do: 

Definition: Given a set A in HM , dL, we define the interior of A, written intHAL or Ao, to 

be the largest open set contained in A. 

That is,

          

Note that Ao is clearly an open subset of A. 

We next define the closure of A, written clHAL or A , to be the smallest closed set contain-

ing A. That is, 

    clHAL = A = Ý8F : F is closed and A Ì F< .

Please take note of the “dual” nature of our two new definitions. Now it is clear that A is 

a closed set containing A (and necessarily the smallest one). But it’s not so clear which 

points are in A or, more precisely, which points are in A\A. 

We could use a description of A that is a little easier to “test” on a given set A. It follows 

from our last theorem that x Î A iff  BΕHxL Ý A ¹ Æ for every ¶ > 0. The description that 

we are looking for simply removes this last reference to A.

• Proposition:

x Î A iff BΕHxL Ý A ¹ Æ for every ¶ > 0. 

Proof:

(Ü)

If BΕHxL Ý A ¹ Æ for every ¶ > 0, then BΕHxL Ý A ¹ Æ for every ¶ > 0 (since A Ì A), and 

hence x Î A (since closed sets contain their limit points) . 

(Þ)

Now let x Î A and let ¶ > 0. If BΕHxL Ý A = Æ, then A is a subset of HBΕHxLLc, a closed set. 

Thus, A Ì BΕHHxLLc. (Why?) But this is a contradiction, because x Î A while x Ï HBΕHxLLc.(Þ

Ü) à

• Corollary:

x Î A iff there is a sequence 8xn<
n=1
¥ Ì A with xn Ì x.

That is, A is the set of all limits of convergent sequences in A (including limits of con-

stant sequences).

Example:

In HR,   × ¤L:

a)  intHH0, 1DL = H0, 1L       and      clHH0, 1DL = @0, 1D

b)  intJ: 1

n
>

n=1

¥

N = Æ          and      clJ: 1

n
>

n=1

¥

N = : 1

n
>

n=1

¥

Ü 80<

c)  intHQL = Æ                   and      clHQL = R Ù

2     Open and Closed Sets.nb



Before  we start our discussion of open and closed sets, let’s review some facts about 

sequences and subsequences and about equivalent metrics.

                 SUBSEQUENCES

Definition:  Given a sequence 8xn<
n=1
¥ , consider a sequence 8nk<

k=1
¥  of positive integers, 

such that n1 < n2 < n3 < ... . Then the sequence 9xn
k
=
k=1

¥
 is called a subsequence of xn.

Example:

Let M = ;Î, Ì, Ï?. Suppose 8xn<
n=1
¥ Ì M  is defined by

      xn =

Ì if n = 3 p

Î if n = 3 p + 1

Ï if n = 3 p + 2

Let 8nk<
k=1
¥  be given by nk = 3 k. What is 9xn

k
=
k=1

¥
?

Solution:

Notice that n1 = 3, n2 = 6, n3 = 9, etc.

So xn1
= x3 = Ì ,  xn2

= x6 = Ì,  and  xn3
= x9 = Ì,  etc.

Thus, 9xn
k
=
k=1

¥
 is the constant sequence 9Ì=

k=1

¥
. Ù

Example: Let 8xn<
n=1
¥ = 9 1

n
=
n=1

¥
. 

a) Suppose 8nk<
k=1
¥ = 82 k + 1<

k=1
¥ . What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 8x2 k+1<

k=1
¥ = 9 1

2 k+1
=
k=1

¥
= 9 1

3
,

1

5
,

1

7
, ...= .   ª

b) Suppose 8nk<
k=1
¥ = 92k=

k=1

¥
. What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 9x

2k=
k=1

¥
= 9 1

2k
=
k=1

¥
= 9 1

2
,

1

4
,

1

8
, ...=.    ª

c) Suppose 8nk<
k=1
¥ = 82, 1, 3, 4, 5, 6, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

2
, 1,

1

3
,

1

4
, ...=. This sequence does not match the order of 8xn< and therefore 

fails to be a subsequence. Notice that n1 = 2 > 1 = n2.   ª

d) Suppose 8nk<
k=1
¥ = 84, 2, 8, 6, 12, 10, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

4
,

1

2
,

1

8
,

1

6
,

1

12
,

1

10
, ...=. This sequence does not match the order of 8xn< and 

therefore fails to be a subsequence of 8xn<. In particular 8nk<
k=1
¥  is not an increasing 

sequence of positive integers.   ª Ù

Note: Subsequences are useful tools that will later help us to describe such important 

concepts like completeness and compactness. For now however, we will have to be satis-

fied with the simple analysis of the relationship between subsequences, convergence, 

and Cauchy sequences. 

 

• Proposition:

If xn Ì
d

x, then xn
k

Ì
d

x for any subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ .

 

Proof:

We must show that for any Ε > 0, there exists K > 0 such that dIxn
k
, xM < Ε  whenever 

k ³ K.

Since xn Ì
d

x, we know that dHxn, xL < Ε  whenever n ³ N . Setting K = N , notice that 

nk ³ K. Thus, when k ³ N , we have dIxn
k
, xM < Ε . à

• Proposition:

A Cauchy sequence with a convergent subsequence converges.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is a convergent subsequence with 

xn
k

Ì
d

x. We must show that xn Ì
d

x. 

For Ε > 0, let N1 be such that dHxn, xmL <
Ε

2
 whenever n, m ³ N1. Also let N2 be such that 

dIxn
k
, xM <

Ε

2
 whenever k ³ N2. Now let N = max 8N1, N2<. 

If n, m > N , then 

              dHxn, xnmL £ dHxn, xmL <
Ε

2
      and       dHxnm, xL <

Ε

2
 .

Thus,

      dHxn, xL £ dHxn, xnm
L + dHxnm

, xL
           £ dHxn, xmL + dHxnm

, xL

           <
Ε

2
+

Ε

2
= Ε . à

 

• Proposition:

Every subsequence of a Cauchy sequence is itself a Cauchy sequence.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is any  subsequence. For Ε > 0, there is 

some N > 0 such that dHxn, xmL < Ε  whenever n, m ³ N . Notice that nn ³ n and nm ³ m. 

Thus dHxnn
, xnm

L < Ε. à

 

• Proposition:

If every subsequence of 8xn<
n=1
¥  has a further subsequence that converges to x, then 

8xn<
n=1
¥  converges to x.

 

Proof:

Suppose that 8xn<
n=1
¥  does not converge to x, but that every subsequence of 8xn<

n=1
¥  has a 

further subsequence, which converges to x.

If xn Ì
not

x (i.e. if xn does not converge to x), then infinitely many elements of the 

sequence 8xn<
n=1
¥  are further from x than some Ε > 0. That is, the set A = 8xn : dHxn, xL ³ Ε< 

is infinite if Ε is small enough. 

Notice that the elements of A form a subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ . Our assumption 

dictates that some further subsequence 9xn
kt

=
t=1

¥
 converges to x. But all the elements of 

9xn
kt

=
t=1

¥
 are elements of A.

In other words, dIxn
kt
, xM ³ Ε " t Î N, implying that xn

kt
Ì
not

x . (ÞÜ)         à

     EQUIVALENT METRICS

We have already seen that the metric at hand determines which sequences are Cauchy 

and which sequences converge. Later we will see that the convergent sequences in 

HM , dL in turn determine the open and closed sets of HM , dL and therefore the continous 

functions on HM , dL.
Given another metric function Ρ, we have generally no reason to expect the metric spaces 

HM , dL and HM , ΡL to have the same convergent sequences. In this section we would like 

to say a few words about metric functions that generate the same convergent sequences.

Definition: Two metrics d and Ρ on a set M  are said to be equivalent metrics if they 

generate the same convergent sequences: that is, dHxn, xL Ì 0  iff ΡHxn, xL Ì 0.

It might be comforting to know that most metric functions on R (or @0, ¥L) hetherto 

considered are equivalent metrics. The following proposition explains why.

• Proposition:

Let d be a metric on M  and suppose that  Ρ is defined by ΡHx, yL = f HdHx, yLL, where 

f : @0, ¥L�@0, ¥L satisfies the following three properties:

i) f HtL ³ 0 with equality iff t = 0.

ii) f ¢HtL > 0  for t Î H0, ¥L

iii) f ¢¢HtL < 0  for t Î H0, ¥L 
Then d and Ρ are equivalent. 

 

Proof:

Notice that f  is continuous and invertible. Since f ¢HtL > 0, we may state that f -1 is differ-

entiable and therefore continuous. 

Next, we need to observe that if g : U Ì R�R is continuous at 0, then for any sequence 

8tn<
n=1
¥ Ì U with tn Ì 0, we have gHtnL Ì gH0L (this will be discussed later on when we 

consider continuous functions and identify their properties).

Now suppose that 8xn<
n=1
¥ Ì M  with xn Ì

d

x. Then dHxn, xL Ì 0. Since f  is continuous, 

we see that f HdHxn, xLL Ì f H0L = 0 by setting tn = dHxn, xL. 
Thus,

 dHxn, xL Ì 0 � f HdHxn, xLL = ΡHxn, xL Ì 0.

On the other hand, if ΡHxn, xL Ì 0, then dHxn, xL = f -1HΡHxn, xLL Ì 0 because f -1 is also 

continuous at 0. We have thus established that dHxn, xL Ì 0  iff ΡHxn, xL Ì 0. Hence 

d and Ρ are equivalent.    à

Example:

The following are all equivalent metrics on R:

• dHx, yL =  x - y¤        • ΡHx, yL =  x - y¤        • ¶Hx, yL =
 x- y¤

1+ x- y¤

• ΖHx, yL = lnH x - y¤ + 1L       • jHx, yL =
lnH x- y¤+1L

1+ lnH x- y¤+1L
Ù

Note: Equivalent metrics preserve convergent sequences. Must they also have the same 

cauchy sequences? The answer is NO, as we can verify in the following example.

Example:

Let M = H0, ¥L. Then dHx, yL =  x - y¤ and ΡHx, yL = ¢ 1

x
-

1

y
¦ are equivalent metrics on M  

that do not generate the same Cauchy sequences. 

To see that d and Ρ are equivalent, observe that the function f HtL =
1

t
 is continuous on 

H0, ¥L. Notice also that f -1HtL = f HtL. That is, f  is its own inverse. 

Now, if xn Ì
d

x, then f HxnL Ì f HxL, or   f HxnL - f HxL¤ Ì 0. Hence xn Ì
d

x implies that 

¢ 1

xn

-
1

x
¦ Ì 0 or xn Ì

Ρ

x . 

On the other hand, xn Ì
Ρ

x implies that f -1HxnL Ì f -1HxL. 
That is, 

xn Ì
Ρ

x � ¡ f -1HxnL - f -1HxL¥ = ¢ 1

xn

-
1

x
¦ Ì 0 .

This in turn implies that ¢ f J 1

xn

M - f J 1

x
M¦ =  xn - x¤ Ì 0.

Thus we have shown that d and Ρ are equivalent.  ª

To see that d and Ρ fail to generate the same Cauchy sequences, notice that : 1

n
>

n=1

¥

 is a 

Cauchy sequence when it is considered under the metric dHx, yL =  x - y¤. Under the 

metric Ρ however, ΡJ 1

n
,

1

m
N =  n - m¤ ³ 1 if m ¹ n. 

Thus : 1

n
>

n=1

¥

 is not Cauchy under Ρ.   ª   Ù

Example:

Let M = R
n. 

Then d1Hx, yL = ÈÈ x - y ÈÈ1 , d2Hx, yL = ÈÈ x - y ÈÈ2 , and d¥Hx, yL = ÈÈ x - y ÈÈ¥  are all equiva-

lent metrics on Rn because

      ÈÈ x - y ÈÈ¥ £ ÈÈ x - y ÈÈ2 £ ÈÈ x - y ÈÈ1
while

 ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ¥    and   ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ2. 

We should verify that d1, d2, and d3 all generate the same Cauchy sequences 

on Rn.              Ù

The last example is very important as it allows us to make the following definition:

Definition: Given two metric spaces HM , dL and HN , ΡL, we can define a metric on the 

product M ´ N  in a variety of ways. Our only requirement is that a sequence of pairs 

Han, xnL in M ´ N  should converge precisely when both coordinate sequences 8an<
n=1
¥ and 

8xn<
n=1
¥  converge in HM , dL and HN , ΡL, respectively.

Each of the following define metrics on M ´ N  that enjoy this property. Moreover, they 

are equivalent :

• d1HHa, xL, Hb, yLL = dHa, bL + ΡHx, yL

• d2HHa, xL, Hb, yLL = IdHa, bL2 + ΡHx, yL2M1�2

• d¥HHa, xL, Hb, yLL = max 8dHa, bL, ΡHx, yL<
Henceforth, any implicit reference to “the” metric on M ´ N , sometimes called the prod-

uct metric, will mean one of d1, d2, or d¥. Any one of them will serve equally well. 

               OPEN SETS

Definition: A set U in a metric space HM , dL is called an open set if  U contains a neigh-

borhood of each of its points. In other words, U is an open set if, given x Î U, there is 

some Ε > 0 such that BΕHxL Ì U.

Example:  

a) In any metric space, the whole space M  is an open set. The empty set Æ is also open 

(by default). 

b) In R, any open interval is an open set. Indeed, given x Î Ha, bL, let Ε = min 8x - a, b - x<. 
Then Ε > 0  and Hx - Ε, x + ΕL Ì Ha, bL. The cases Ha, ¥L and H-¥, bL are similar. 

While we’re at it, notice that the interval @0, 1L, for example, is not open in R because it 

does not contain an entire neighborhood of 0.

c) In a discrete space, B1HxL = 8x< is an open set for any x. It follows that every subset of a 

discrete space is open. Ù

Before we get too carried away, we should follow the lead suggested by the last example 

and check that every open ball is in fact an open set.

• Proposition:

For any x Î M  and any Ε > 0, the open ball BΕHxL is an open set.

Proof:

Consult the drawing below to understand the motivation behind the argument of the 

proof.

                 

Let y Î BΕHxL. Then dHx, yL < Ε  and hence ∆ = Ε - dHx, yL > 0.

We will show that B∆H yL Ì BΕHxL. 
Indeed, if dH y, zL < ∆, then, by the triangle inequality

            dHx, zL £ dHx, yL + dH y, zL < dHx, yL + ∆ = dHx, yL + Ε - dHx, yL = Ε.             à

Let’s collect our thoughts. First, every open ball is open. Next, it follows from the defini-

tion of open sets that an open set must actually be a union of open balls . In fact, if  U is 

open, then U = Ü8BΕHxL : BΕHxL Ì U<. 
Moreover, any arbitrary union of open balls is again an open set. Here’s what all of this 

means:

• Theorem:

An arbitrary union of open sets is again open. That is, if 8UΑ<ΑÎA is any collection of open 

sets, then V = Ü
ΑÎA

UΑ is open.

Proof:

If x Î V , then x Î UΑ for some Α Î A. But then, since UΑ is open, BΕHxL Ì UΑ Ì V  for 

some Ε > 0. à

Intersections aren’t nearly as generous: 

• Theorem:

A finite intersection of open sets is open. That is, if each of  U1, … , Un is open, then so 

is V = U1 Ý … Ý Un . 

Proof:

If x Î V , then x Î Ui for all i = 1, … , n. Thus, for each i there is an ¶i > 0 such that 

BΕi
Ì Ui. But then, setting Ε = min 8Ε1, ..., Εn< > 0, we have BΕHxL Ì Ý

i=1

n

Ui = V .    à

Example: 

The word “finite” is crucial in the above theorem because Ý
n=1

¥

J-
1

n
,

1

n
N = 80< , and 80< is 

not open in R. Ù

Now, since the real line R is of special interest to us, let’s characterize the open subsets 

of  R . This will come in handy later. But it should be stressed that while this characteriza-

tion holds for  R, it does not have a satisfactory analogue even in R2 . (As we will see in a 

later chapter, not every open set in the plane can be written as a union of disjoint open 

disks.)

• Theorem:

If U is an open subset of R, then U may be written as a countable union of disjoint open 

intervals. That is, U = Ü
n=1

¥

In , where In = Han, bnL (these may be unbounded) and 

In Ý Im = Æ for n ¹ m.

Proof:

We know that U can be written as a union of open intervals (because each x Î U is in 

some open interval I with I Ì U). What we need to show is that U is a union of disjoint 

open intervals (such a union must be countable(to see why, check exercise 2.15 on 

Carother’s)) . 

We first claim that each x Î U is contained in a maximal open interval Ix Ì U in the 

sense that if x Î I Ì U , where I is an open interval, then we must have I Ì Ix. Indeed, 

given x Î U, let 

       ax = inf 8a : Ha, xD Ì U<     and     bx = sup 8b : @x, bM Ì U= .

Then, Ix = Hax, bxL satisfies x Î Ix Ì U, and Ix is clearly maximal. (Check this!) 

Next, notice that for any x, y Î U we have either Ix Ý Iy = Æ  or Ix = Iy. Why? Because if 

Ix Ý Iy ¹ Æ , then Ix Ü Iy is an open interval containing both Ix and Iy. By maximality we 

would then have Ix = Iy. It follows then that U is the union of disjoint (maximal) inter-

vals: U = Ü
xÎU

Ix . à

Now any time we make up a new definition in a metric space setting, it is usually very 

helpful to find an equivalent version stated exclusively in terms of sequences. To moti-

vate this in the particular case of open sets, let’s recall:

           xn Ì x � 8xn< is eventually in BΕHxL for any Ε > 0

and hence

            xn Ì x � 8xn< is eventually in U, for any open set U containing x .

This last statements essentially characterizes open sets:

• Theorem:

A set U in HM , dL is open iff, whenever a sequence 8xn<
n=1
¥  in M  converges to a point 

x Î U, we have xn Î U for all but finitely many n. 

Proof:

The forward implication is clear from the remarks preceding the theorem. Let’s see why 

the new condition implies that U is open:

If U is not open , then there is an x Î U such that BΕHxL Ý Uc ¹ Æ for all ¶ > 0. In particu-

lar , for each n there is some xn Î B1�nHxL Ý Uc. But then 8xn<
n=1
¥ Ì Uc and xn Ì x. Thus, 

the new condition also fails.(ÞÜ) à

In slightly different language, the above theorem is saying that the only way to reach a 

member of an open set is by traveling well inside the set; there are no inhabitants on the 

“frontier.” In essence, you cannot visit a single resident without seeing a whole neighbor-

hood!

  CLOSED SETS

Definition: A set F in a metric space HM , dL is said to be a closed set if its complement 

Fc = M\F is open. 

We can draw several immediate (although not terribly enlightening) conclusions:

Example:  

a) Ø  and M  are always closed. (This means that it is possible for a set to be both open 

and closed!) 

b) An arbitrary intersection of closed sets is closed. A finite union of closed sets is closed.

c) Any finite set is closed. Indeed, it is enough to show that 8x< is always closed. (Why?) 

Given any y Î M\8x< (that is, any y ¹ x), note that ¶ = dHx, yL > 0, and hence 

BΕH yL Ì M\8x<. 

d) In R, each of the intervals @a, bD, @a, ¥L, and H-¥, bD is closed. Also, N and D (the Can-

tor set, which we’ll study very soon) are closed sets. (Why?) 

e) In a discrete space, every subset is closed.

f) Sets are not “doors”! For instance, H0, 1D is neither open nor closed in R! (What??)

Ù

As yet, our definition is not terribly useful. It would be nice if we had an intrinsic charac-

terization of closed sets (something that did not depend on a knowledge of open sets), 

something in terms of sequences, for example. For this let’s first make an observation: F 

is closed iff Fc is open.

So F is closed iff

          x Î Fc � BΕHxL Ì Fc     for some Ε > 0 .

But this is the same as saying: F is closed iff

        BΕHxL Ý F ¹ Æ   for every Ε > 0 � x Î F .

        

This is our first characterization of closed sets. Intuitively speaking, closed sets are like 

blobs from a 60’s horror movie. A closed set will devour all points that reside in arbitrary 

proximity to the set.

                      

In order to better understand the nature of these “predatory” sets, let’s bring in a few 

definitions.

Definition: Let A be a subset of M . A point x Î M  is called a limit point of A if every 

neighborhood of x contains a point of A that is different from x itself, that is, if 

HBΕHxL\8x<L Ý A ¹ Æ  for any Ε > 0.

Example:  

a) Suppose you place a sugar cube, a cherry, and a queen-ant around an ant nest. Several 

moments later you take a snapshot of the event that ensues:

                

If we let A be the set of all ants in the picture, then the sugar cube, the cherry, and the 

queen-ant are all limit points of A (assuming that infinitely many ants cluster tighter and 

tighter around each object). Notice that s (sugar) and c (cherry) are not members of A, 

whereas Q Î A.

b) Let A = 8xn<
n=1
¥ Ì M  and suppose xn Ì

d

x Î M . Then x is the only limit point of A.

Note however, that a non-convergent sequence can have a huge number of limit points. 

For instance, let Q be arranged into a sequence 8rn<
n=1
¥ . Then every point of R is a limit 

point of Q. Ù

Definition: A set F is a closed set iff it contains all of its limits points.

Example:  

Let Z be the set of all zombies. Is Z a closed set?

Solution:

To answer this question, we must decide whether Z contains all of its limit points. To 

put this problem in “life or death” terms, suppose x is a limit point of Z. Then, would 

you shoot x with your sniper rifle?

               

If the concentric circles of the sniper scope never present the target in isolation, that is, 

if the heads of other zombies are always present within each target’s circle (no matter 

how small it is), then the target is a limit point of zombies. It will inevitably be “in con-

tact” with the living dead and therefore become a zombie (if it is not already a zombie). 

Therefore it appears that Z is a closed set (and that shooting the target might be the 

most humane course of action). Ù

Notice that the characterization of closed sets in terms of limit points can readily be 

translated into a sequential description. To see why, suppose x is a limit point of some 

set F. Then, by definition, BΕHxL Ý F ¹ Æ for every Ε > 0. But this means that for each 

1 � n, we can find some xn Î B1�nHxL Ý F. 

Thus, the sequence 8xn<
n=1
¥ Ì F converges to x. In other words, any limit point of F is 

necessarily a point of convergence of some sequence of elements of F.

This means that F is closed iff every sequence 8xn<
n=1
¥  that consists of elements of F and 

converges in M É F, must actually converge to an element of F.

We summarize our results in the following theorem:

• Theorem:

Given a set F in HM , dL, the following are equivalent: 

(i) F is closed; that is, Fc = M\F is open.

(ii) If BΕHxL Ý F ¹ Æ for every ¶ > 0, then x Î F. 

(iii) If a sequence 8xn<
n=1
¥ Ì F converges to some point x Î M , then x Î F.

Proof:

(i)�(ii): This is clear from our observations above and the definition of an open set. 

(ii)�(iii): Suppose that 8xn<
n=1
¥ Ì F and xn Ì

d

x Î M  . Then BΕHxL contains infinitely 

many xn for any ¶ > 0, and hence BΕHxL Ý F ¹ Æ for any ¶ > 0. Thus, x Î F by (ii).

(iii)�(ii): If BΕHxL Ý F ¹ Æ for all ¶ > 0, then for each n there is an xn Î B1�nHxL Ý F. The 

sequence 8xn<
n=1
¥  satisfies 8xn<

n=1
¥ Ì F and xn Ì x. Hence, x Î F by (iii).      à

Note: Most authors take (iii) as the definition of a closed set . In other words, condition 

(iii) says that a closed set must contain all of its limit points. That is, “closed” means 

closed under the operation of taking of limits.

Now, as we’ve seen, some sets are neither open nor closed. However, it is possible to 

describe the “open part” of a set and the “closure” of a set. Here’s what we’ll do: 

Definition: Given a set A in HM , dL, we define the interior of A, written intHAL or Ao, to 

be the largest open set contained in A. 

That is,

          

Note that Ao is clearly an open subset of A. 

We next define the closure of A, written clHAL or A , to be the smallest closed set contain-

ing A. That is, 

    clHAL = A = Ý8F : F is closed and A Ì F< .

Please take note of the “dual” nature of our two new definitions. Now it is clear that A is 

a closed set containing A (and necessarily the smallest one). But it’s not so clear which 

points are in A or, more precisely, which points are in A\A. 

We could use a description of A that is a little easier to “test” on a given set A. It follows 

from our last theorem that x Î A iff  BΕHxL Ý A ¹ Æ for every ¶ > 0. The description that 

we are looking for simply removes this last reference to A.

• Proposition:

x Î A iff BΕHxL Ý A ¹ Æ for every ¶ > 0. 

Proof:

(Ü)

If BΕHxL Ý A ¹ Æ for every ¶ > 0, then BΕHxL Ý A ¹ Æ for every ¶ > 0 (since A Ì A), and 

hence x Î A (since closed sets contain their limit points) . 

(Þ)

Now let x Î A and let ¶ > 0. If BΕHxL Ý A = Æ, then A is a subset of HBΕHxLLc, a closed set. 

Thus, A Ì BΕHHxLLc. (Why?) But this is a contradiction, because x Î A while x Ï HBΕHxLLc.(Þ

Ü) à

• Corollary:

x Î A iff there is a sequence 8xn<
n=1
¥ Ì A with xn Ì x.

That is, A is the set of all limits of convergent sequences in A (including limits of con-

stant sequences).

Example:

In HR,   × ¤L:

a)  intHH0, 1DL = H0, 1L       and      clHH0, 1DL = @0, 1D

b)  intJ: 1

n
>

n=1

¥

N = Æ          and      clJ: 1

n
>

n=1

¥

N = : 1

n
>

n=1

¥

Ü 80<

c)  intHQL = Æ                   and      clHQL = R Ù

Open and Closed Sets.nb    3



Before  we start our discussion of open and closed sets, let’s review some facts about 

sequences and subsequences and about equivalent metrics.

                 SUBSEQUENCES

Definition:  Given a sequence 8xn<
n=1
¥ , consider a sequence 8nk<

k=1
¥  of positive integers, 

such that n1 < n2 < n3 < ... . Then the sequence 9xn
k
=
k=1

¥
 is called a subsequence of xn.

Example:

Let M = ;Î, Ì, Ï?. Suppose 8xn<
n=1
¥ Ì M  is defined by

      xn =

Ì if n = 3 p

Î if n = 3 p + 1

Ï if n = 3 p + 2

Let 8nk<
k=1
¥  be given by nk = 3 k. What is 9xn

k
=
k=1

¥
?

Solution:

Notice that n1 = 3, n2 = 6, n3 = 9, etc.

So xn1
= x3 = Ì ,  xn2

= x6 = Ì,  and  xn3
= x9 = Ì,  etc.

Thus, 9xn
k
=
k=1

¥
 is the constant sequence 9Ì=

k=1

¥
. Ù

Example: Let 8xn<
n=1
¥ = 9 1

n
=
n=1

¥
. 

a) Suppose 8nk<
k=1
¥ = 82 k + 1<

k=1
¥ . What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 8x2 k+1<

k=1
¥ = 9 1

2 k+1
=
k=1

¥
= 9 1

3
,

1

5
,

1

7
, ...= .   ª

b) Suppose 8nk<
k=1
¥ = 92k=

k=1

¥
. What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 9x

2k=
k=1

¥
= 9 1

2k
=
k=1

¥
= 9 1

2
,

1

4
,

1

8
, ...=.    ª

c) Suppose 8nk<
k=1
¥ = 82, 1, 3, 4, 5, 6, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

2
, 1,

1

3
,

1

4
, ...=. This sequence does not match the order of 8xn< and therefore 

fails to be a subsequence. Notice that n1 = 2 > 1 = n2.   ª

d) Suppose 8nk<
k=1
¥ = 84, 2, 8, 6, 12, 10, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

4
,

1

2
,

1

8
,

1

6
,

1

12
,

1

10
, ...=. This sequence does not match the order of 8xn< and 

therefore fails to be a subsequence of 8xn<. In particular 8nk<
k=1
¥  is not an increasing 

sequence of positive integers.   ª Ù

Note: Subsequences are useful tools that will later help us to describe such important 

concepts like completeness and compactness. For now however, we will have to be satis-

fied with the simple analysis of the relationship between subsequences, convergence, 

and Cauchy sequences. 

 

• Proposition:

If xn Ì
d

x, then xn
k

Ì
d

x for any subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ .

 

Proof:

We must show that for any Ε > 0, there exists K > 0 such that dIxn
k
, xM < Ε  whenever 

k ³ K.

Since xn Ì
d

x, we know that dHxn, xL < Ε  whenever n ³ N . Setting K = N , notice that 

nk ³ K. Thus, when k ³ N , we have dIxn
k
, xM < Ε . à

• Proposition:

A Cauchy sequence with a convergent subsequence converges.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is a convergent subsequence with 

xn
k

Ì
d

x. We must show that xn Ì
d

x. 

For Ε > 0, let N1 be such that dHxn, xmL <
Ε

2
 whenever n, m ³ N1. Also let N2 be such that 

dIxn
k
, xM <

Ε

2
 whenever k ³ N2. Now let N = max 8N1, N2<. 

If n, m > N , then 

              dHxn, xnmL £ dHxn, xmL <
Ε

2
      and       dHxnm, xL <

Ε

2
 .

Thus,

      dHxn, xL £ dHxn, xnm
L + dHxnm

, xL
           £ dHxn, xmL + dHxnm

, xL

           <
Ε

2
+

Ε

2
= Ε . à

 

• Proposition:

Every subsequence of a Cauchy sequence is itself a Cauchy sequence.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is any  subsequence. For Ε > 0, there is 

some N > 0 such that dHxn, xmL < Ε  whenever n, m ³ N . Notice that nn ³ n and nm ³ m. 

Thus dHxnn
, xnm

L < Ε. à

 

• Proposition:

If every subsequence of 8xn<
n=1
¥  has a further subsequence that converges to x, then 

8xn<
n=1
¥  converges to x.

 

Proof:

Suppose that 8xn<
n=1
¥  does not converge to x, but that every subsequence of 8xn<

n=1
¥  has a 

further subsequence, which converges to x.

If xn Ì
not

x (i.e. if xn does not converge to x), then infinitely many elements of the 

sequence 8xn<
n=1
¥  are further from x than some Ε > 0. That is, the set A = 8xn : dHxn, xL ³ Ε< 

is infinite if Ε is small enough. 

Notice that the elements of A form a subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ . Our assumption 

dictates that some further subsequence 9xn
kt

=
t=1

¥
 converges to x. But all the elements of 

9xn
kt

=
t=1

¥
 are elements of A.

In other words, dIxn
kt
, xM ³ Ε " t Î N, implying that xn

kt
Ì
not

x . (ÞÜ)         à

     EQUIVALENT METRICS

We have already seen that the metric at hand determines which sequences are Cauchy 

and which sequences converge. Later we will see that the convergent sequences in 

HM , dL in turn determine the open and closed sets of HM , dL and therefore the continous 

functions on HM , dL.
Given another metric function Ρ, we have generally no reason to expect the metric spaces 

HM , dL and HM , ΡL to have the same convergent sequences. In this section we would like 

to say a few words about metric functions that generate the same convergent sequences.

Definition: Two metrics d and Ρ on a set M  are said to be equivalent metrics if they 

generate the same convergent sequences: that is, dHxn, xL Ì 0  iff ΡHxn, xL Ì 0.

It might be comforting to know that most metric functions on R (or @0, ¥L) hetherto 

considered are equivalent metrics. The following proposition explains why.

• Proposition:

Let d be a metric on M  and suppose that  Ρ is defined by ΡHx, yL = f HdHx, yLL, where 

f : @0, ¥L�@0, ¥L satisfies the following three properties:

i) f HtL ³ 0 with equality iff t = 0.

ii) f ¢HtL > 0  for t Î H0, ¥L

iii) f ¢¢HtL < 0  for t Î H0, ¥L 
Then d and Ρ are equivalent. 

 

Proof:

Notice that f  is continuous and invertible. Since f ¢HtL > 0, we may state that f -1 is differ-

entiable and therefore continuous. 

Next, we need to observe that if g : U Ì R�R is continuous at 0, then for any sequence 

8tn<
n=1
¥ Ì U with tn Ì 0, we have gHtnL Ì gH0L (this will be discussed later on when we 

consider continuous functions and identify their properties).

Now suppose that 8xn<
n=1
¥ Ì M  with xn Ì

d

x. Then dHxn, xL Ì 0. Since f  is continuous, 

we see that f HdHxn, xLL Ì f H0L = 0 by setting tn = dHxn, xL. 
Thus,

 dHxn, xL Ì 0 � f HdHxn, xLL = ΡHxn, xL Ì 0.

On the other hand, if ΡHxn, xL Ì 0, then dHxn, xL = f -1HΡHxn, xLL Ì 0 because f -1 is also 

continuous at 0. We have thus established that dHxn, xL Ì 0  iff ΡHxn, xL Ì 0. Hence 

d and Ρ are equivalent.    à

Example:

The following are all equivalent metrics on R:

• dHx, yL =  x - y¤        • ΡHx, yL =  x - y¤        • ¶Hx, yL =
 x- y¤

1+ x- y¤

• ΖHx, yL = lnH x - y¤ + 1L       • jHx, yL =
lnH x- y¤+1L

1+ lnH x- y¤+1L
Ù

Note: Equivalent metrics preserve convergent sequences. Must they also have the same 

cauchy sequences? The answer is NO, as we can verify in the following example.

Example:

Let M = H0, ¥L. Then dHx, yL =  x - y¤ and ΡHx, yL = ¢ 1

x
-

1

y
¦ are equivalent metrics on M  

that do not generate the same Cauchy sequences. 

To see that d and Ρ are equivalent, observe that the function f HtL =
1

t
 is continuous on 

H0, ¥L. Notice also that f -1HtL = f HtL. That is, f  is its own inverse. 

Now, if xn Ì
d

x, then f HxnL Ì f HxL, or   f HxnL - f HxL¤ Ì 0. Hence xn Ì
d

x implies that 

¢ 1

xn

-
1

x
¦ Ì 0 or xn Ì

Ρ

x . 

On the other hand, xn Ì
Ρ

x implies that f -1HxnL Ì f -1HxL. 
That is, 

xn Ì
Ρ

x � ¡ f -1HxnL - f -1HxL¥ = ¢ 1

xn

-
1

x
¦ Ì 0 .

This in turn implies that ¢ f J 1

xn

M - f J 1

x
M¦ =  xn - x¤ Ì 0.

Thus we have shown that d and Ρ are equivalent.  ª

To see that d and Ρ fail to generate the same Cauchy sequences, notice that : 1

n
>

n=1

¥

 is a 

Cauchy sequence when it is considered under the metric dHx, yL =  x - y¤. Under the 

metric Ρ however, ΡJ 1

n
,

1

m
N =  n - m¤ ³ 1 if m ¹ n. 

Thus : 1

n
>

n=1

¥

 is not Cauchy under Ρ.   ª   Ù

Example:

Let M = R
n. 

Then d1Hx, yL = ÈÈ x - y ÈÈ1 , d2Hx, yL = ÈÈ x - y ÈÈ2 , and d¥Hx, yL = ÈÈ x - y ÈÈ¥  are all equiva-

lent metrics on Rn because

      ÈÈ x - y ÈÈ¥ £ ÈÈ x - y ÈÈ2 £ ÈÈ x - y ÈÈ1
while

 ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ¥    and   ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ2. 

We should verify that d1, d2, and d3 all generate the same Cauchy sequences 

on Rn.              Ù

The last example is very important as it allows us to make the following definition:

Definition: Given two metric spaces HM , dL and HN , ΡL, we can define a metric on the 

product M ´ N  in a variety of ways. Our only requirement is that a sequence of pairs 

Han, xnL in M ´ N  should converge precisely when both coordinate sequences 8an<
n=1
¥ and 

8xn<
n=1
¥  converge in HM , dL and HN , ΡL, respectively.

Each of the following define metrics on M ´ N  that enjoy this property. Moreover, they 

are equivalent :

• d1HHa, xL, Hb, yLL = dHa, bL + ΡHx, yL

• d2HHa, xL, Hb, yLL = IdHa, bL2 + ΡHx, yL2M1�2

• d¥HHa, xL, Hb, yLL = max 8dHa, bL, ΡHx, yL<
Henceforth, any implicit reference to “the” metric on M ´ N , sometimes called the prod-

uct metric, will mean one of d1, d2, or d¥. Any one of them will serve equally well. 

               OPEN SETS

Definition: A set U in a metric space HM , dL is called an open set if  U contains a neigh-

borhood of each of its points. In other words, U is an open set if, given x Î U, there is 

some Ε > 0 such that BΕHxL Ì U.

Example:  

a) In any metric space, the whole space M  is an open set. The empty set Æ is also open 

(by default). 

b) In R, any open interval is an open set. Indeed, given x Î Ha, bL, let Ε = min 8x - a, b - x<. 
Then Ε > 0  and Hx - Ε, x + ΕL Ì Ha, bL. The cases Ha, ¥L and H-¥, bL are similar. 

While we’re at it, notice that the interval @0, 1L, for example, is not open in R because it 

does not contain an entire neighborhood of 0.

c) In a discrete space, B1HxL = 8x< is an open set for any x. It follows that every subset of a 

discrete space is open. Ù

Before we get too carried away, we should follow the lead suggested by the last example 

and check that every open ball is in fact an open set.

• Proposition:

For any x Î M  and any Ε > 0, the open ball BΕHxL is an open set.

Proof:

Consult the drawing below to understand the motivation behind the argument of the 

proof.

                 

Let y Î BΕHxL. Then dHx, yL < Ε  and hence ∆ = Ε - dHx, yL > 0.

We will show that B∆H yL Ì BΕHxL. 
Indeed, if dH y, zL < ∆, then, by the triangle inequality

            dHx, zL £ dHx, yL + dH y, zL < dHx, yL + ∆ = dHx, yL + Ε - dHx, yL = Ε.             à

Let’s collect our thoughts. First, every open ball is open. Next, it follows from the defini-

tion of open sets that an open set must actually be a union of open balls . In fact, if  U is 

open, then U = Ü8BΕHxL : BΕHxL Ì U<. 
Moreover, any arbitrary union of open balls is again an open set. Here’s what all of this 

means:

• Theorem:

An arbitrary union of open sets is again open. That is, if 8UΑ<ΑÎA is any collection of open 

sets, then V = Ü
ΑÎA

UΑ is open.

Proof:

If x Î V , then x Î UΑ for some Α Î A. But then, since UΑ is open, BΕHxL Ì UΑ Ì V  for 

some Ε > 0. à

Intersections aren’t nearly as generous: 

• Theorem:

A finite intersection of open sets is open. That is, if each of  U1, … , Un is open, then so 

is V = U1 Ý … Ý Un . 

Proof:

If x Î V , then x Î Ui for all i = 1, … , n. Thus, for each i there is an ¶i > 0 such that 

BΕi
Ì Ui. But then, setting Ε = min 8Ε1, ..., Εn< > 0, we have BΕHxL Ì Ý

i=1

n

Ui = V .    à

Example: 

The word “finite” is crucial in the above theorem because Ý
n=1

¥

J-
1

n
,

1

n
N = 80< , and 80< is 

not open in R. Ù

Now, since the real line R is of special interest to us, let’s characterize the open subsets 

of  R . This will come in handy later. But it should be stressed that while this characteriza-

tion holds for  R, it does not have a satisfactory analogue even in R2 . (As we will see in a 

later chapter, not every open set in the plane can be written as a union of disjoint open 

disks.)

• Theorem:

If U is an open subset of R, then U may be written as a countable union of disjoint open 

intervals. That is, U = Ü
n=1

¥

In , where In = Han, bnL (these may be unbounded) and 

In Ý Im = Æ for n ¹ m.

Proof:

We know that U can be written as a union of open intervals (because each x Î U is in 

some open interval I with I Ì U). What we need to show is that U is a union of disjoint 

open intervals (such a union must be countable(to see why, check exercise 2.15 on 

Carother’s)) . 

We first claim that each x Î U is contained in a maximal open interval Ix Ì U in the 

sense that if x Î I Ì U , where I is an open interval, then we must have I Ì Ix. Indeed, 

given x Î U, let 

       ax = inf 8a : Ha, xD Ì U<     and     bx = sup 8b : @x, bM Ì U= .

Then, Ix = Hax, bxL satisfies x Î Ix Ì U, and Ix is clearly maximal. (Check this!) 

Next, notice that for any x, y Î U we have either Ix Ý Iy = Æ  or Ix = Iy. Why? Because if 

Ix Ý Iy ¹ Æ , then Ix Ü Iy is an open interval containing both Ix and Iy. By maximality we 

would then have Ix = Iy. It follows then that U is the union of disjoint (maximal) inter-

vals: U = Ü
xÎU

Ix . à

Now any time we make up a new definition in a metric space setting, it is usually very 

helpful to find an equivalent version stated exclusively in terms of sequences. To moti-

vate this in the particular case of open sets, let’s recall:

           xn Ì x � 8xn< is eventually in BΕHxL for any Ε > 0

and hence

            xn Ì x � 8xn< is eventually in U, for any open set U containing x .

This last statements essentially characterizes open sets:

• Theorem:

A set U in HM , dL is open iff, whenever a sequence 8xn<
n=1
¥  in M  converges to a point 

x Î U, we have xn Î U for all but finitely many n. 

Proof:

The forward implication is clear from the remarks preceding the theorem. Let’s see why 

the new condition implies that U is open:

If U is not open , then there is an x Î U such that BΕHxL Ý Uc ¹ Æ for all ¶ > 0. In particu-

lar , for each n there is some xn Î B1�nHxL Ý Uc. But then 8xn<
n=1
¥ Ì Uc and xn Ì x. Thus, 

the new condition also fails.(ÞÜ) à

In slightly different language, the above theorem is saying that the only way to reach a 

member of an open set is by traveling well inside the set; there are no inhabitants on the 

“frontier.” In essence, you cannot visit a single resident without seeing a whole neighbor-

hood!

  CLOSED SETS

Definition: A set F in a metric space HM , dL is said to be a closed set if its complement 

Fc = M\F is open. 

We can draw several immediate (although not terribly enlightening) conclusions:

Example:  

a) Ø  and M  are always closed. (This means that it is possible for a set to be both open 

and closed!) 

b) An arbitrary intersection of closed sets is closed. A finite union of closed sets is closed.

c) Any finite set is closed. Indeed, it is enough to show that 8x< is always closed. (Why?) 

Given any y Î M\8x< (that is, any y ¹ x), note that ¶ = dHx, yL > 0, and hence 

BΕH yL Ì M\8x<. 

d) In R, each of the intervals @a, bD, @a, ¥L, and H-¥, bD is closed. Also, N and D (the Can-

tor set, which we’ll study very soon) are closed sets. (Why?) 

e) In a discrete space, every subset is closed.

f) Sets are not “doors”! For instance, H0, 1D is neither open nor closed in R! (What??)

Ù

As yet, our definition is not terribly useful. It would be nice if we had an intrinsic charac-

terization of closed sets (something that did not depend on a knowledge of open sets), 

something in terms of sequences, for example. For this let’s first make an observation: F 

is closed iff Fc is open.

So F is closed iff

          x Î Fc � BΕHxL Ì Fc     for some Ε > 0 .

But this is the same as saying: F is closed iff

        BΕHxL Ý F ¹ Æ   for every Ε > 0 � x Î F .

        

This is our first characterization of closed sets. Intuitively speaking, closed sets are like 

blobs from a 60’s horror movie. A closed set will devour all points that reside in arbitrary 

proximity to the set.

                      

In order to better understand the nature of these “predatory” sets, let’s bring in a few 

definitions.

Definition: Let A be a subset of M . A point x Î M  is called a limit point of A if every 

neighborhood of x contains a point of A that is different from x itself, that is, if 

HBΕHxL\8x<L Ý A ¹ Æ  for any Ε > 0.

Example:  

a) Suppose you place a sugar cube, a cherry, and a queen-ant around an ant nest. Several 

moments later you take a snapshot of the event that ensues:

                

If we let A be the set of all ants in the picture, then the sugar cube, the cherry, and the 

queen-ant are all limit points of A (assuming that infinitely many ants cluster tighter and 

tighter around each object). Notice that s (sugar) and c (cherry) are not members of A, 

whereas Q Î A.

b) Let A = 8xn<
n=1
¥ Ì M  and suppose xn Ì

d

x Î M . Then x is the only limit point of A.

Note however, that a non-convergent sequence can have a huge number of limit points. 

For instance, let Q be arranged into a sequence 8rn<
n=1
¥ . Then every point of R is a limit 

point of Q. Ù

Definition: A set F is a closed set iff it contains all of its limits points.

Example:  

Let Z be the set of all zombies. Is Z a closed set?

Solution:

To answer this question, we must decide whether Z contains all of its limit points. To 

put this problem in “life or death” terms, suppose x is a limit point of Z. Then, would 

you shoot x with your sniper rifle?

               

If the concentric circles of the sniper scope never present the target in isolation, that is, 

if the heads of other zombies are always present within each target’s circle (no matter 

how small it is), then the target is a limit point of zombies. It will inevitably be “in con-

tact” with the living dead and therefore become a zombie (if it is not already a zombie). 

Therefore it appears that Z is a closed set (and that shooting the target might be the 

most humane course of action). Ù

Notice that the characterization of closed sets in terms of limit points can readily be 

translated into a sequential description. To see why, suppose x is a limit point of some 

set F. Then, by definition, BΕHxL Ý F ¹ Æ for every Ε > 0. But this means that for each 

1 � n, we can find some xn Î B1�nHxL Ý F. 

Thus, the sequence 8xn<
n=1
¥ Ì F converges to x. In other words, any limit point of F is 

necessarily a point of convergence of some sequence of elements of F.

This means that F is closed iff every sequence 8xn<
n=1
¥  that consists of elements of F and 

converges in M É F, must actually converge to an element of F.

We summarize our results in the following theorem:

• Theorem:

Given a set F in HM , dL, the following are equivalent: 

(i) F is closed; that is, Fc = M\F is open.

(ii) If BΕHxL Ý F ¹ Æ for every ¶ > 0, then x Î F. 

(iii) If a sequence 8xn<
n=1
¥ Ì F converges to some point x Î M , then x Î F.

Proof:

(i)�(ii): This is clear from our observations above and the definition of an open set. 

(ii)�(iii): Suppose that 8xn<
n=1
¥ Ì F and xn Ì

d

x Î M  . Then BΕHxL contains infinitely 

many xn for any ¶ > 0, and hence BΕHxL Ý F ¹ Æ for any ¶ > 0. Thus, x Î F by (ii).

(iii)�(ii): If BΕHxL Ý F ¹ Æ for all ¶ > 0, then for each n there is an xn Î B1�nHxL Ý F. The 

sequence 8xn<
n=1
¥  satisfies 8xn<

n=1
¥ Ì F and xn Ì x. Hence, x Î F by (iii).      à

Note: Most authors take (iii) as the definition of a closed set . In other words, condition 

(iii) says that a closed set must contain all of its limit points. That is, “closed” means 

closed under the operation of taking of limits.

Now, as we’ve seen, some sets are neither open nor closed. However, it is possible to 

describe the “open part” of a set and the “closure” of a set. Here’s what we’ll do: 

Definition: Given a set A in HM , dL, we define the interior of A, written intHAL or Ao, to 

be the largest open set contained in A. 

That is,

          

Note that Ao is clearly an open subset of A. 

We next define the closure of A, written clHAL or A , to be the smallest closed set contain-

ing A. That is, 

    clHAL = A = Ý8F : F is closed and A Ì F< .

Please take note of the “dual” nature of our two new definitions. Now it is clear that A is 

a closed set containing A (and necessarily the smallest one). But it’s not so clear which 

points are in A or, more precisely, which points are in A\A. 

We could use a description of A that is a little easier to “test” on a given set A. It follows 

from our last theorem that x Î A iff  BΕHxL Ý A ¹ Æ for every ¶ > 0. The description that 

we are looking for simply removes this last reference to A.

• Proposition:

x Î A iff BΕHxL Ý A ¹ Æ for every ¶ > 0. 

Proof:

(Ü)

If BΕHxL Ý A ¹ Æ for every ¶ > 0, then BΕHxL Ý A ¹ Æ for every ¶ > 0 (since A Ì A), and 

hence x Î A (since closed sets contain their limit points) . 

(Þ)

Now let x Î A and let ¶ > 0. If BΕHxL Ý A = Æ, then A is a subset of HBΕHxLLc, a closed set. 

Thus, A Ì BΕHHxLLc. (Why?) But this is a contradiction, because x Î A while x Ï HBΕHxLLc.(Þ

Ü) à

• Corollary:

x Î A iff there is a sequence 8xn<
n=1
¥ Ì A with xn Ì x.

That is, A is the set of all limits of convergent sequences in A (including limits of con-

stant sequences).

Example:

In HR,   × ¤L:

a)  intHH0, 1DL = H0, 1L       and      clHH0, 1DL = @0, 1D

b)  intJ: 1

n
>

n=1

¥

N = Æ          and      clJ: 1

n
>

n=1

¥

N = : 1

n
>

n=1

¥

Ü 80<

c)  intHQL = Æ                   and      clHQL = R Ù

4     Open and Closed Sets.nb



Before  we start our discussion of open and closed sets, let’s review some facts about 

sequences and subsequences and about equivalent metrics.

                 SUBSEQUENCES

Definition:  Given a sequence 8xn<
n=1
¥ , consider a sequence 8nk<

k=1
¥  of positive integers, 

such that n1 < n2 < n3 < ... . Then the sequence 9xn
k
=
k=1

¥
 is called a subsequence of xn.

Example:

Let M = ;Î, Ì, Ï?. Suppose 8xn<
n=1
¥ Ì M  is defined by

      xn =

Ì if n = 3 p

Î if n = 3 p + 1

Ï if n = 3 p + 2

Let 8nk<
k=1
¥  be given by nk = 3 k. What is 9xn

k
=
k=1

¥
?

Solution:

Notice that n1 = 3, n2 = 6, n3 = 9, etc.

So xn1
= x3 = Ì ,  xn2

= x6 = Ì,  and  xn3
= x9 = Ì,  etc.

Thus, 9xn
k
=
k=1

¥
 is the constant sequence 9Ì=

k=1

¥
. Ù

Example: Let 8xn<
n=1
¥ = 9 1

n
=
n=1

¥
. 

a) Suppose 8nk<
k=1
¥ = 82 k + 1<

k=1
¥ . What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 8x2 k+1<

k=1
¥ = 9 1

2 k+1
=
k=1

¥
= 9 1

3
,

1

5
,

1

7
, ...= .   ª

b) Suppose 8nk<
k=1
¥ = 92k=

k=1

¥
. What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 9x

2k=
k=1

¥
= 9 1

2k
=
k=1

¥
= 9 1

2
,

1

4
,

1

8
, ...=.    ª

c) Suppose 8nk<
k=1
¥ = 82, 1, 3, 4, 5, 6, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

2
, 1,

1

3
,

1

4
, ...=. This sequence does not match the order of 8xn< and therefore 

fails to be a subsequence. Notice that n1 = 2 > 1 = n2.   ª

d) Suppose 8nk<
k=1
¥ = 84, 2, 8, 6, 12, 10, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

4
,

1

2
,

1

8
,

1

6
,

1

12
,

1

10
, ...=. This sequence does not match the order of 8xn< and 

therefore fails to be a subsequence of 8xn<. In particular 8nk<
k=1
¥  is not an increasing 

sequence of positive integers.   ª Ù

Note: Subsequences are useful tools that will later help us to describe such important 

concepts like completeness and compactness. For now however, we will have to be satis-

fied with the simple analysis of the relationship between subsequences, convergence, 

and Cauchy sequences. 

 

• Proposition:

If xn Ì
d

x, then xn
k

Ì
d

x for any subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ .

 

Proof:

We must show that for any Ε > 0, there exists K > 0 such that dIxn
k
, xM < Ε  whenever 

k ³ K.

Since xn Ì
d

x, we know that dHxn, xL < Ε  whenever n ³ N . Setting K = N , notice that 

nk ³ K. Thus, when k ³ N , we have dIxn
k
, xM < Ε . à

• Proposition:

A Cauchy sequence with a convergent subsequence converges.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is a convergent subsequence with 

xn
k

Ì
d

x. We must show that xn Ì
d

x. 

For Ε > 0, let N1 be such that dHxn, xmL <
Ε

2
 whenever n, m ³ N1. Also let N2 be such that 

dIxn
k
, xM <

Ε

2
 whenever k ³ N2. Now let N = max 8N1, N2<. 

If n, m > N , then 

              dHxn, xnmL £ dHxn, xmL <
Ε

2
      and       dHxnm, xL <

Ε

2
 .

Thus,

      dHxn, xL £ dHxn, xnm
L + dHxnm

, xL
           £ dHxn, xmL + dHxnm

, xL

           <
Ε

2
+

Ε

2
= Ε . à

 

• Proposition:

Every subsequence of a Cauchy sequence is itself a Cauchy sequence.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is any  subsequence. For Ε > 0, there is 

some N > 0 such that dHxn, xmL < Ε  whenever n, m ³ N . Notice that nn ³ n and nm ³ m. 

Thus dHxnn
, xnm

L < Ε. à

 

• Proposition:

If every subsequence of 8xn<
n=1
¥  has a further subsequence that converges to x, then 

8xn<
n=1
¥  converges to x.

 

Proof:

Suppose that 8xn<
n=1
¥  does not converge to x, but that every subsequence of 8xn<

n=1
¥  has a 

further subsequence, which converges to x.

If xn Ì
not

x (i.e. if xn does not converge to x), then infinitely many elements of the 

sequence 8xn<
n=1
¥  are further from x than some Ε > 0. That is, the set A = 8xn : dHxn, xL ³ Ε< 

is infinite if Ε is small enough. 

Notice that the elements of A form a subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ . Our assumption 

dictates that some further subsequence 9xn
kt

=
t=1

¥
 converges to x. But all the elements of 

9xn
kt

=
t=1

¥
 are elements of A.

In other words, dIxn
kt
, xM ³ Ε " t Î N, implying that xn

kt
Ì
not

x . (ÞÜ)         à

     EQUIVALENT METRICS

We have already seen that the metric at hand determines which sequences are Cauchy 

and which sequences converge. Later we will see that the convergent sequences in 

HM , dL in turn determine the open and closed sets of HM , dL and therefore the continous 

functions on HM , dL.
Given another metric function Ρ, we have generally no reason to expect the metric spaces 

HM , dL and HM , ΡL to have the same convergent sequences. In this section we would like 

to say a few words about metric functions that generate the same convergent sequences.

Definition: Two metrics d and Ρ on a set M  are said to be equivalent metrics if they 

generate the same convergent sequences: that is, dHxn, xL Ì 0  iff ΡHxn, xL Ì 0.

It might be comforting to know that most metric functions on R (or @0, ¥L) hetherto 

considered are equivalent metrics. The following proposition explains why.

• Proposition:

Let d be a metric on M  and suppose that  Ρ is defined by ΡHx, yL = f HdHx, yLL, where 

f : @0, ¥L�@0, ¥L satisfies the following three properties:

i) f HtL ³ 0 with equality iff t = 0.

ii) f ¢HtL > 0  for t Î H0, ¥L

iii) f ¢¢HtL < 0  for t Î H0, ¥L 
Then d and Ρ are equivalent. 

 

Proof:

Notice that f  is continuous and invertible. Since f ¢HtL > 0, we may state that f -1 is differ-

entiable and therefore continuous. 

Next, we need to observe that if g : U Ì R�R is continuous at 0, then for any sequence 

8tn<
n=1
¥ Ì U with tn Ì 0, we have gHtnL Ì gH0L (this will be discussed later on when we 

consider continuous functions and identify their properties).

Now suppose that 8xn<
n=1
¥ Ì M  with xn Ì

d

x. Then dHxn, xL Ì 0. Since f  is continuous, 

we see that f HdHxn, xLL Ì f H0L = 0 by setting tn = dHxn, xL. 
Thus,

 dHxn, xL Ì 0 � f HdHxn, xLL = ΡHxn, xL Ì 0.

On the other hand, if ΡHxn, xL Ì 0, then dHxn, xL = f -1HΡHxn, xLL Ì 0 because f -1 is also 

continuous at 0. We have thus established that dHxn, xL Ì 0  iff ΡHxn, xL Ì 0. Hence 

d and Ρ are equivalent.    à

Example:

The following are all equivalent metrics on R:

• dHx, yL =  x - y¤        • ΡHx, yL =  x - y¤        • ¶Hx, yL =
 x- y¤

1+ x- y¤

• ΖHx, yL = lnH x - y¤ + 1L       • jHx, yL =
lnH x- y¤+1L

1+ lnH x- y¤+1L
Ù

Note: Equivalent metrics preserve convergent sequences. Must they also have the same 

cauchy sequences? The answer is NO, as we can verify in the following example.

Example:

Let M = H0, ¥L. Then dHx, yL =  x - y¤ and ΡHx, yL = ¢ 1

x
-

1

y
¦ are equivalent metrics on M  

that do not generate the same Cauchy sequences. 

To see that d and Ρ are equivalent, observe that the function f HtL =
1

t
 is continuous on 

H0, ¥L. Notice also that f -1HtL = f HtL. That is, f  is its own inverse. 

Now, if xn Ì
d

x, then f HxnL Ì f HxL, or   f HxnL - f HxL¤ Ì 0. Hence xn Ì
d

x implies that 

¢ 1

xn

-
1

x
¦ Ì 0 or xn Ì

Ρ

x . 

On the other hand, xn Ì
Ρ

x implies that f -1HxnL Ì f -1HxL. 
That is, 

xn Ì
Ρ

x � ¡ f -1HxnL - f -1HxL¥ = ¢ 1

xn

-
1

x
¦ Ì 0 .

This in turn implies that ¢ f J 1

xn

M - f J 1

x
M¦ =  xn - x¤ Ì 0.

Thus we have shown that d and Ρ are equivalent.  ª

To see that d and Ρ fail to generate the same Cauchy sequences, notice that : 1

n
>

n=1

¥

 is a 

Cauchy sequence when it is considered under the metric dHx, yL =  x - y¤. Under the 

metric Ρ however, ΡJ 1

n
,

1

m
N =  n - m¤ ³ 1 if m ¹ n. 

Thus : 1

n
>

n=1

¥

 is not Cauchy under Ρ.   ª   Ù

Example:

Let M = R
n. 

Then d1Hx, yL = ÈÈ x - y ÈÈ1 , d2Hx, yL = ÈÈ x - y ÈÈ2 , and d¥Hx, yL = ÈÈ x - y ÈÈ¥  are all equiva-

lent metrics on Rn because

      ÈÈ x - y ÈÈ¥ £ ÈÈ x - y ÈÈ2 £ ÈÈ x - y ÈÈ1
while

 ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ¥    and   ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ2. 

We should verify that d1, d2, and d3 all generate the same Cauchy sequences 

on Rn.              Ù

The last example is very important as it allows us to make the following definition:

Definition: Given two metric spaces HM , dL and HN , ΡL, we can define a metric on the 

product M ´ N  in a variety of ways. Our only requirement is that a sequence of pairs 

Han, xnL in M ´ N  should converge precisely when both coordinate sequences 8an<
n=1
¥ and 

8xn<
n=1
¥  converge in HM , dL and HN , ΡL, respectively.

Each of the following define metrics on M ´ N  that enjoy this property. Moreover, they 

are equivalent :

• d1HHa, xL, Hb, yLL = dHa, bL + ΡHx, yL

• d2HHa, xL, Hb, yLL = IdHa, bL2 + ΡHx, yL2M1�2

• d¥HHa, xL, Hb, yLL = max 8dHa, bL, ΡHx, yL<
Henceforth, any implicit reference to “the” metric on M ´ N , sometimes called the prod-

uct metric, will mean one of d1, d2, or d¥. Any one of them will serve equally well. 

               OPEN SETS

Definition: A set U in a metric space HM , dL is called an open set if  U contains a neigh-

borhood of each of its points. In other words, U is an open set if, given x Î U, there is 

some Ε > 0 such that BΕHxL Ì U.

Example:  

a) In any metric space, the whole space M  is an open set. The empty set Æ is also open 

(by default). 

b) In R, any open interval is an open set. Indeed, given x Î Ha, bL, let Ε = min 8x - a, b - x<. 
Then Ε > 0  and Hx - Ε, x + ΕL Ì Ha, bL. The cases Ha, ¥L and H-¥, bL are similar. 

While we’re at it, notice that the interval @0, 1L, for example, is not open in R because it 

does not contain an entire neighborhood of 0.

c) In a discrete space, B1HxL = 8x< is an open set for any x. It follows that every subset of a 

discrete space is open. Ù

Before we get too carried away, we should follow the lead suggested by the last example 

and check that every open ball is in fact an open set.

• Proposition:

For any x Î M  and any Ε > 0, the open ball BΕHxL is an open set.

Proof:

Consult the drawing below to understand the motivation behind the argument of the 

proof.

                 

Let y Î BΕHxL. Then dHx, yL < Ε  and hence ∆ = Ε - dHx, yL > 0.

We will show that B∆H yL Ì BΕHxL. 
Indeed, if dH y, zL < ∆, then, by the triangle inequality

            dHx, zL £ dHx, yL + dH y, zL < dHx, yL + ∆ = dHx, yL + Ε - dHx, yL = Ε.             à

Let’s collect our thoughts. First, every open ball is open. Next, it follows from the defini-

tion of open sets that an open set must actually be a union of open balls . In fact, if  U is 

open, then U = Ü8BΕHxL : BΕHxL Ì U<. 
Moreover, any arbitrary union of open balls is again an open set. Here’s what all of this 

means:

• Theorem:

An arbitrary union of open sets is again open. That is, if 8UΑ<ΑÎA is any collection of open 

sets, then V = Ü
ΑÎA

UΑ is open.

Proof:

If x Î V , then x Î UΑ for some Α Î A. But then, since UΑ is open, BΕHxL Ì UΑ Ì V  for 

some Ε > 0. à

Intersections aren’t nearly as generous: 

• Theorem:

A finite intersection of open sets is open. That is, if each of  U1, … , Un is open, then so 

is V = U1 Ý … Ý Un . 

Proof:

If x Î V , then x Î Ui for all i = 1, … , n. Thus, for each i there is an ¶i > 0 such that 

BΕi
Ì Ui. But then, setting Ε = min 8Ε1, ..., Εn< > 0, we have BΕHxL Ì Ý

i=1

n

Ui = V .    à

Example: 

The word “finite” is crucial in the above theorem because Ý
n=1

¥

J-
1

n
,

1

n
N = 80< , and 80< is 

not open in R. Ù

Now, since the real line R is of special interest to us, let’s characterize the open subsets 

of  R . This will come in handy later. But it should be stressed that while this characteriza-

tion holds for  R, it does not have a satisfactory analogue even in R2 . (As we will see in a 

later chapter, not every open set in the plane can be written as a union of disjoint open 

disks.)

• Theorem:

If U is an open subset of R, then U may be written as a countable union of disjoint open 

intervals. That is, U = Ü
n=1

¥

In , where In = Han, bnL (these may be unbounded) and 

In Ý Im = Æ for n ¹ m.

Proof:

We know that U can be written as a union of open intervals (because each x Î U is in 

some open interval I with I Ì U). What we need to show is that U is a union of disjoint 

open intervals (such a union must be countable(to see why, check exercise 2.15 on 

Carother’s)) . 

We first claim that each x Î U is contained in a maximal open interval Ix Ì U in the 

sense that if x Î I Ì U , where I is an open interval, then we must have I Ì Ix. Indeed, 

given x Î U, let 

       ax = inf 8a : Ha, xD Ì U<     and     bx = sup 8b : @x, bM Ì U= .

Then, Ix = Hax, bxL satisfies x Î Ix Ì U, and Ix is clearly maximal. (Check this!) 

Next, notice that for any x, y Î U we have either Ix Ý Iy = Æ  or Ix = Iy. Why? Because if 

Ix Ý Iy ¹ Æ , then Ix Ü Iy is an open interval containing both Ix and Iy. By maximality we 

would then have Ix = Iy. It follows then that U is the union of disjoint (maximal) inter-

vals: U = Ü
xÎU

Ix . à

Now any time we make up a new definition in a metric space setting, it is usually very 

helpful to find an equivalent version stated exclusively in terms of sequences. To moti-

vate this in the particular case of open sets, let’s recall:

           xn Ì x � 8xn< is eventually in BΕHxL for any Ε > 0

and hence

            xn Ì x � 8xn< is eventually in U, for any open set U containing x .

This last statements essentially characterizes open sets:

• Theorem:

A set U in HM , dL is open iff, whenever a sequence 8xn<
n=1
¥  in M  converges to a point 

x Î U, we have xn Î U for all but finitely many n. 

Proof:

The forward implication is clear from the remarks preceding the theorem. Let’s see why 

the new condition implies that U is open:

If U is not open , then there is an x Î U such that BΕHxL Ý Uc ¹ Æ for all ¶ > 0. In particu-

lar , for each n there is some xn Î B1�nHxL Ý Uc. But then 8xn<
n=1
¥ Ì Uc and xn Ì x. Thus, 

the new condition also fails.(ÞÜ) à

In slightly different language, the above theorem is saying that the only way to reach a 

member of an open set is by traveling well inside the set; there are no inhabitants on the 

“frontier.” In essence, you cannot visit a single resident without seeing a whole neighbor-

hood!

  CLOSED SETS

Definition: A set F in a metric space HM , dL is said to be a closed set if its complement 

Fc = M\F is open. 

We can draw several immediate (although not terribly enlightening) conclusions:

Example:  

a) Ø  and M  are always closed. (This means that it is possible for a set to be both open 

and closed!) 

b) An arbitrary intersection of closed sets is closed. A finite union of closed sets is closed.

c) Any finite set is closed. Indeed, it is enough to show that 8x< is always closed. (Why?) 

Given any y Î M\8x< (that is, any y ¹ x), note that ¶ = dHx, yL > 0, and hence 

BΕH yL Ì M\8x<. 

d) In R, each of the intervals @a, bD, @a, ¥L, and H-¥, bD is closed. Also, N and D (the Can-

tor set, which we’ll study very soon) are closed sets. (Why?) 

e) In a discrete space, every subset is closed.

f) Sets are not “doors”! For instance, H0, 1D is neither open nor closed in R! (What??)

Ù

As yet, our definition is not terribly useful. It would be nice if we had an intrinsic charac-

terization of closed sets (something that did not depend on a knowledge of open sets), 

something in terms of sequences, for example. For this let’s first make an observation: F 

is closed iff Fc is open.

So F is closed iff

          x Î Fc � BΕHxL Ì Fc     for some Ε > 0 .

But this is the same as saying: F is closed iff

        BΕHxL Ý F ¹ Æ   for every Ε > 0 � x Î F .

        

This is our first characterization of closed sets. Intuitively speaking, closed sets are like 

blobs from a 60’s horror movie. A closed set will devour all points that reside in arbitrary 

proximity to the set.

                      

In order to better understand the nature of these “predatory” sets, let’s bring in a few 

definitions.

Definition: Let A be a subset of M . A point x Î M  is called a limit point of A if every 

neighborhood of x contains a point of A that is different from x itself, that is, if 

HBΕHxL\8x<L Ý A ¹ Æ  for any Ε > 0.

Example:  

a) Suppose you place a sugar cube, a cherry, and a queen-ant around an ant nest. Several 

moments later you take a snapshot of the event that ensues:

                

If we let A be the set of all ants in the picture, then the sugar cube, the cherry, and the 

queen-ant are all limit points of A (assuming that infinitely many ants cluster tighter and 

tighter around each object). Notice that s (sugar) and c (cherry) are not members of A, 

whereas Q Î A.

b) Let A = 8xn<
n=1
¥ Ì M  and suppose xn Ì

d

x Î M . Then x is the only limit point of A.

Note however, that a non-convergent sequence can have a huge number of limit points. 

For instance, let Q be arranged into a sequence 8rn<
n=1
¥ . Then every point of R is a limit 

point of Q. Ù

Definition: A set F is a closed set iff it contains all of its limits points.

Example:  

Let Z be the set of all zombies. Is Z a closed set?

Solution:

To answer this question, we must decide whether Z contains all of its limit points. To 

put this problem in “life or death” terms, suppose x is a limit point of Z. Then, would 

you shoot x with your sniper rifle?

               

If the concentric circles of the sniper scope never present the target in isolation, that is, 

if the heads of other zombies are always present within each target’s circle (no matter 

how small it is), then the target is a limit point of zombies. It will inevitably be “in con-

tact” with the living dead and therefore become a zombie (if it is not already a zombie). 

Therefore it appears that Z is a closed set (and that shooting the target might be the 

most humane course of action). Ù

Notice that the characterization of closed sets in terms of limit points can readily be 

translated into a sequential description. To see why, suppose x is a limit point of some 

set F. Then, by definition, BΕHxL Ý F ¹ Æ for every Ε > 0. But this means that for each 

1 � n, we can find some xn Î B1�nHxL Ý F. 

Thus, the sequence 8xn<
n=1
¥ Ì F converges to x. In other words, any limit point of F is 

necessarily a point of convergence of some sequence of elements of F.

This means that F is closed iff every sequence 8xn<
n=1
¥  that consists of elements of F and 

converges in M É F, must actually converge to an element of F.

We summarize our results in the following theorem:

• Theorem:

Given a set F in HM , dL, the following are equivalent: 

(i) F is closed; that is, Fc = M\F is open.

(ii) If BΕHxL Ý F ¹ Æ for every ¶ > 0, then x Î F. 

(iii) If a sequence 8xn<
n=1
¥ Ì F converges to some point x Î M , then x Î F.

Proof:

(i)�(ii): This is clear from our observations above and the definition of an open set. 

(ii)�(iii): Suppose that 8xn<
n=1
¥ Ì F and xn Ì

d

x Î M  . Then BΕHxL contains infinitely 

many xn for any ¶ > 0, and hence BΕHxL Ý F ¹ Æ for any ¶ > 0. Thus, x Î F by (ii).

(iii)�(ii): If BΕHxL Ý F ¹ Æ for all ¶ > 0, then for each n there is an xn Î B1�nHxL Ý F. The 

sequence 8xn<
n=1
¥  satisfies 8xn<

n=1
¥ Ì F and xn Ì x. Hence, x Î F by (iii).      à

Note: Most authors take (iii) as the definition of a closed set . In other words, condition 

(iii) says that a closed set must contain all of its limit points. That is, “closed” means 

closed under the operation of taking of limits.

Now, as we’ve seen, some sets are neither open nor closed. However, it is possible to 

describe the “open part” of a set and the “closure” of a set. Here’s what we’ll do: 

Definition: Given a set A in HM , dL, we define the interior of A, written intHAL or Ao, to 

be the largest open set contained in A. 

That is,

          

Note that Ao is clearly an open subset of A. 

We next define the closure of A, written clHAL or A , to be the smallest closed set contain-

ing A. That is, 

    clHAL = A = Ý8F : F is closed and A Ì F< .

Please take note of the “dual” nature of our two new definitions. Now it is clear that A is 

a closed set containing A (and necessarily the smallest one). But it’s not so clear which 

points are in A or, more precisely, which points are in A\A. 

We could use a description of A that is a little easier to “test” on a given set A. It follows 

from our last theorem that x Î A iff  BΕHxL Ý A ¹ Æ for every ¶ > 0. The description that 

we are looking for simply removes this last reference to A.

• Proposition:

x Î A iff BΕHxL Ý A ¹ Æ for every ¶ > 0. 

Proof:

(Ü)

If BΕHxL Ý A ¹ Æ for every ¶ > 0, then BΕHxL Ý A ¹ Æ for every ¶ > 0 (since A Ì A), and 

hence x Î A (since closed sets contain their limit points) . 

(Þ)

Now let x Î A and let ¶ > 0. If BΕHxL Ý A = Æ, then A is a subset of HBΕHxLLc, a closed set. 

Thus, A Ì BΕHHxLLc. (Why?) But this is a contradiction, because x Î A while x Ï HBΕHxLLc.(Þ

Ü) à

• Corollary:

x Î A iff there is a sequence 8xn<
n=1
¥ Ì A with xn Ì x.

That is, A is the set of all limits of convergent sequences in A (including limits of con-

stant sequences).

Example:

In HR,   × ¤L:

a)  intHH0, 1DL = H0, 1L       and      clHH0, 1DL = @0, 1D

b)  intJ: 1

n
>

n=1

¥

N = Æ          and      clJ: 1

n
>

n=1

¥

N = : 1

n
>

n=1

¥

Ü 80<

c)  intHQL = Æ                   and      clHQL = R Ù

Open and Closed Sets.nb    5



Before  we start our discussion of open and closed sets, let’s review some facts about 

sequences and subsequences and about equivalent metrics.

                 SUBSEQUENCES

Definition:  Given a sequence 8xn<
n=1
¥ , consider a sequence 8nk<

k=1
¥  of positive integers, 

such that n1 < n2 < n3 < ... . Then the sequence 9xn
k
=
k=1

¥
 is called a subsequence of xn.

Example:

Let M = ;Î, Ì, Ï?. Suppose 8xn<
n=1
¥ Ì M  is defined by

      xn =

Ì if n = 3 p

Î if n = 3 p + 1

Ï if n = 3 p + 2

Let 8nk<
k=1
¥  be given by nk = 3 k. What is 9xn

k
=
k=1

¥
?

Solution:

Notice that n1 = 3, n2 = 6, n3 = 9, etc.

So xn1
= x3 = Ì ,  xn2

= x6 = Ì,  and  xn3
= x9 = Ì,  etc.

Thus, 9xn
k
=
k=1

¥
 is the constant sequence 9Ì=

k=1

¥
. Ù

Example: Let 8xn<
n=1
¥ = 9 1

n
=
n=1

¥
. 

a) Suppose 8nk<
k=1
¥ = 82 k + 1<

k=1
¥ . What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 8x2 k+1<

k=1
¥ = 9 1

2 k+1
=
k=1

¥
= 9 1

3
,

1

5
,

1

7
, ...= .   ª

b) Suppose 8nk<
k=1
¥ = 92k=

k=1

¥
. What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 9x

2k=
k=1

¥
= 9 1

2k
=
k=1

¥
= 9 1

2
,

1

4
,

1

8
, ...=.    ª

c) Suppose 8nk<
k=1
¥ = 82, 1, 3, 4, 5, 6, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

2
, 1,

1

3
,

1

4
, ...=. This sequence does not match the order of 8xn< and therefore 

fails to be a subsequence. Notice that n1 = 2 > 1 = n2.   ª

d) Suppose 8nk<
k=1
¥ = 84, 2, 8, 6, 12, 10, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

4
,

1

2
,

1

8
,

1

6
,

1

12
,

1

10
, ...=. This sequence does not match the order of 8xn< and 

therefore fails to be a subsequence of 8xn<. In particular 8nk<
k=1
¥  is not an increasing 

sequence of positive integers.   ª Ù

Note: Subsequences are useful tools that will later help us to describe such important 

concepts like completeness and compactness. For now however, we will have to be satis-

fied with the simple analysis of the relationship between subsequences, convergence, 

and Cauchy sequences. 

 

• Proposition:

If xn Ì
d

x, then xn
k

Ì
d

x for any subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ .

 

Proof:

We must show that for any Ε > 0, there exists K > 0 such that dIxn
k
, xM < Ε  whenever 

k ³ K.

Since xn Ì
d

x, we know that dHxn, xL < Ε  whenever n ³ N . Setting K = N , notice that 

nk ³ K. Thus, when k ³ N , we have dIxn
k
, xM < Ε . à

• Proposition:

A Cauchy sequence with a convergent subsequence converges.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is a convergent subsequence with 

xn
k

Ì
d

x. We must show that xn Ì
d

x. 

For Ε > 0, let N1 be such that dHxn, xmL <
Ε

2
 whenever n, m ³ N1. Also let N2 be such that 

dIxn
k
, xM <

Ε

2
 whenever k ³ N2. Now let N = max 8N1, N2<. 

If n, m > N , then 

              dHxn, xnmL £ dHxn, xmL <
Ε

2
      and       dHxnm, xL <

Ε

2
 .

Thus,

      dHxn, xL £ dHxn, xnm
L + dHxnm

, xL
           £ dHxn, xmL + dHxnm

, xL

           <
Ε

2
+

Ε

2
= Ε . à

 

• Proposition:

Every subsequence of a Cauchy sequence is itself a Cauchy sequence.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is any  subsequence. For Ε > 0, there is 

some N > 0 such that dHxn, xmL < Ε  whenever n, m ³ N . Notice that nn ³ n and nm ³ m. 

Thus dHxnn
, xnm

L < Ε. à

 

• Proposition:

If every subsequence of 8xn<
n=1
¥  has a further subsequence that converges to x, then 

8xn<
n=1
¥  converges to x.

 

Proof:

Suppose that 8xn<
n=1
¥  does not converge to x, but that every subsequence of 8xn<

n=1
¥  has a 

further subsequence, which converges to x.

If xn Ì
not

x (i.e. if xn does not converge to x), then infinitely many elements of the 

sequence 8xn<
n=1
¥  are further from x than some Ε > 0. That is, the set A = 8xn : dHxn, xL ³ Ε< 

is infinite if Ε is small enough. 

Notice that the elements of A form a subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ . Our assumption 

dictates that some further subsequence 9xn
kt

=
t=1

¥
 converges to x. But all the elements of 

9xn
kt

=
t=1

¥
 are elements of A.

In other words, dIxn
kt
, xM ³ Ε " t Î N, implying that xn

kt
Ì
not

x . (ÞÜ)         à

     EQUIVALENT METRICS

We have already seen that the metric at hand determines which sequences are Cauchy 

and which sequences converge. Later we will see that the convergent sequences in 

HM , dL in turn determine the open and closed sets of HM , dL and therefore the continous 

functions on HM , dL.
Given another metric function Ρ, we have generally no reason to expect the metric spaces 

HM , dL and HM , ΡL to have the same convergent sequences. In this section we would like 

to say a few words about metric functions that generate the same convergent sequences.

Definition: Two metrics d and Ρ on a set M  are said to be equivalent metrics if they 

generate the same convergent sequences: that is, dHxn, xL Ì 0  iff ΡHxn, xL Ì 0.

It might be comforting to know that most metric functions on R (or @0, ¥L) hetherto 

considered are equivalent metrics. The following proposition explains why.

• Proposition:

Let d be a metric on M  and suppose that  Ρ is defined by ΡHx, yL = f HdHx, yLL, where 

f : @0, ¥L�@0, ¥L satisfies the following three properties:

i) f HtL ³ 0 with equality iff t = 0.

ii) f ¢HtL > 0  for t Î H0, ¥L

iii) f ¢¢HtL < 0  for t Î H0, ¥L 
Then d and Ρ are equivalent. 

 

Proof:

Notice that f  is continuous and invertible. Since f ¢HtL > 0, we may state that f -1 is differ-

entiable and therefore continuous. 

Next, we need to observe that if g : U Ì R�R is continuous at 0, then for any sequence 

8tn<
n=1
¥ Ì U with tn Ì 0, we have gHtnL Ì gH0L (this will be discussed later on when we 

consider continuous functions and identify their properties).

Now suppose that 8xn<
n=1
¥ Ì M  with xn Ì

d

x. Then dHxn, xL Ì 0. Since f  is continuous, 

we see that f HdHxn, xLL Ì f H0L = 0 by setting tn = dHxn, xL. 
Thus,

 dHxn, xL Ì 0 � f HdHxn, xLL = ΡHxn, xL Ì 0.

On the other hand, if ΡHxn, xL Ì 0, then dHxn, xL = f -1HΡHxn, xLL Ì 0 because f -1 is also 

continuous at 0. We have thus established that dHxn, xL Ì 0  iff ΡHxn, xL Ì 0. Hence 

d and Ρ are equivalent.    à

Example:

The following are all equivalent metrics on R:

• dHx, yL =  x - y¤        • ΡHx, yL =  x - y¤        • ¶Hx, yL =
 x- y¤

1+ x- y¤

• ΖHx, yL = lnH x - y¤ + 1L       • jHx, yL =
lnH x- y¤+1L

1+ lnH x- y¤+1L
Ù

Note: Equivalent metrics preserve convergent sequences. Must they also have the same 

cauchy sequences? The answer is NO, as we can verify in the following example.

Example:

Let M = H0, ¥L. Then dHx, yL =  x - y¤ and ΡHx, yL = ¢ 1

x
-

1

y
¦ are equivalent metrics on M  

that do not generate the same Cauchy sequences. 

To see that d and Ρ are equivalent, observe that the function f HtL =
1

t
 is continuous on 

H0, ¥L. Notice also that f -1HtL = f HtL. That is, f  is its own inverse. 

Now, if xn Ì
d

x, then f HxnL Ì f HxL, or   f HxnL - f HxL¤ Ì 0. Hence xn Ì
d

x implies that 

¢ 1

xn

-
1

x
¦ Ì 0 or xn Ì

Ρ

x . 

On the other hand, xn Ì
Ρ

x implies that f -1HxnL Ì f -1HxL. 
That is, 

xn Ì
Ρ

x � ¡ f -1HxnL - f -1HxL¥ = ¢ 1

xn

-
1

x
¦ Ì 0 .

This in turn implies that ¢ f J 1

xn

M - f J 1

x
M¦ =  xn - x¤ Ì 0.

Thus we have shown that d and Ρ are equivalent.  ª

To see that d and Ρ fail to generate the same Cauchy sequences, notice that : 1

n
>

n=1

¥

 is a 

Cauchy sequence when it is considered under the metric dHx, yL =  x - y¤. Under the 

metric Ρ however, ΡJ 1

n
,

1

m
N =  n - m¤ ³ 1 if m ¹ n. 

Thus : 1

n
>

n=1

¥

 is not Cauchy under Ρ.   ª   Ù

Example:

Let M = R
n. 

Then d1Hx, yL = ÈÈ x - y ÈÈ1 , d2Hx, yL = ÈÈ x - y ÈÈ2 , and d¥Hx, yL = ÈÈ x - y ÈÈ¥  are all equiva-

lent metrics on Rn because

      ÈÈ x - y ÈÈ¥ £ ÈÈ x - y ÈÈ2 £ ÈÈ x - y ÈÈ1
while

 ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ¥    and   ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ2. 

We should verify that d1, d2, and d3 all generate the same Cauchy sequences 

on Rn.              Ù

The last example is very important as it allows us to make the following definition:

Definition: Given two metric spaces HM , dL and HN , ΡL, we can define a metric on the 

product M ´ N  in a variety of ways. Our only requirement is that a sequence of pairs 

Han, xnL in M ´ N  should converge precisely when both coordinate sequences 8an<
n=1
¥ and 

8xn<
n=1
¥  converge in HM , dL and HN , ΡL, respectively.

Each of the following define metrics on M ´ N  that enjoy this property. Moreover, they 

are equivalent :

• d1HHa, xL, Hb, yLL = dHa, bL + ΡHx, yL

• d2HHa, xL, Hb, yLL = IdHa, bL2 + ΡHx, yL2M1�2

• d¥HHa, xL, Hb, yLL = max 8dHa, bL, ΡHx, yL<
Henceforth, any implicit reference to “the” metric on M ´ N , sometimes called the prod-

uct metric, will mean one of d1, d2, or d¥. Any one of them will serve equally well. 

               OPEN SETS

Definition: A set U in a metric space HM , dL is called an open set if  U contains a neigh-

borhood of each of its points. In other words, U is an open set if, given x Î U, there is 

some Ε > 0 such that BΕHxL Ì U.

Example:  

a) In any metric space, the whole space M  is an open set. The empty set Æ is also open 

(by default). 

b) In R, any open interval is an open set. Indeed, given x Î Ha, bL, let Ε = min 8x - a, b - x<. 
Then Ε > 0  and Hx - Ε, x + ΕL Ì Ha, bL. The cases Ha, ¥L and H-¥, bL are similar. 

While we’re at it, notice that the interval @0, 1L, for example, is not open in R because it 

does not contain an entire neighborhood of 0.

c) In a discrete space, B1HxL = 8x< is an open set for any x. It follows that every subset of a 

discrete space is open. Ù

Before we get too carried away, we should follow the lead suggested by the last example 

and check that every open ball is in fact an open set.

• Proposition:

For any x Î M  and any Ε > 0, the open ball BΕHxL is an open set.

Proof:

Consult the drawing below to understand the motivation behind the argument of the 

proof.

                 

Let y Î BΕHxL. Then dHx, yL < Ε  and hence ∆ = Ε - dHx, yL > 0.

We will show that B∆H yL Ì BΕHxL. 
Indeed, if dH y, zL < ∆, then, by the triangle inequality

            dHx, zL £ dHx, yL + dH y, zL < dHx, yL + ∆ = dHx, yL + Ε - dHx, yL = Ε.             à

Let’s collect our thoughts. First, every open ball is open. Next, it follows from the defini-

tion of open sets that an open set must actually be a union of open balls . In fact, if  U is 

open, then U = Ü8BΕHxL : BΕHxL Ì U<. 
Moreover, any arbitrary union of open balls is again an open set. Here’s what all of this 

means:

• Theorem:

An arbitrary union of open sets is again open. That is, if 8UΑ<ΑÎA is any collection of open 

sets, then V = Ü
ΑÎA

UΑ is open.

Proof:

If x Î V , then x Î UΑ for some Α Î A. But then, since UΑ is open, BΕHxL Ì UΑ Ì V  for 

some Ε > 0. à

Intersections aren’t nearly as generous: 

• Theorem:

A finite intersection of open sets is open. That is, if each of  U1, … , Un is open, then so 

is V = U1 Ý … Ý Un . 

Proof:

If x Î V , then x Î Ui for all i = 1, … , n. Thus, for each i there is an ¶i > 0 such that 

BΕi
Ì Ui. But then, setting Ε = min 8Ε1, ..., Εn< > 0, we have BΕHxL Ì Ý

i=1

n

Ui = V .    à

Example: 

The word “finite” is crucial in the above theorem because Ý
n=1

¥

J-
1

n
,

1

n
N = 80< , and 80< is 

not open in R. Ù

Now, since the real line R is of special interest to us, let’s characterize the open subsets 

of  R . This will come in handy later. But it should be stressed that while this characteriza-

tion holds for  R, it does not have a satisfactory analogue even in R2 . (As we will see in a 

later chapter, not every open set in the plane can be written as a union of disjoint open 

disks.)

• Theorem:

If U is an open subset of R, then U may be written as a countable union of disjoint open 

intervals. That is, U = Ü
n=1

¥

In , where In = Han, bnL (these may be unbounded) and 

In Ý Im = Æ for n ¹ m.

Proof:

We know that U can be written as a union of open intervals (because each x Î U is in 

some open interval I with I Ì U). What we need to show is that U is a union of disjoint 

open intervals (such a union must be countable(to see why, check exercise 2.15 on 

Carother’s)) . 

We first claim that each x Î U is contained in a maximal open interval Ix Ì U in the 

sense that if x Î I Ì U , where I is an open interval, then we must have I Ì Ix. Indeed, 

given x Î U, let 

       ax = inf 8a : Ha, xD Ì U<     and     bx = sup 8b : @x, bM Ì U= .

Then, Ix = Hax, bxL satisfies x Î Ix Ì U, and Ix is clearly maximal. (Check this!) 

Next, notice that for any x, y Î U we have either Ix Ý Iy = Æ  or Ix = Iy. Why? Because if 

Ix Ý Iy ¹ Æ , then Ix Ü Iy is an open interval containing both Ix and Iy. By maximality we 

would then have Ix = Iy. It follows then that U is the union of disjoint (maximal) inter-

vals: U = Ü
xÎU

Ix . à

Now any time we make up a new definition in a metric space setting, it is usually very 

helpful to find an equivalent version stated exclusively in terms of sequences. To moti-

vate this in the particular case of open sets, let’s recall:

           xn Ì x � 8xn< is eventually in BΕHxL for any Ε > 0

and hence

            xn Ì x � 8xn< is eventually in U, for any open set U containing x .

This last statements essentially characterizes open sets:

• Theorem:

A set U in HM , dL is open iff, whenever a sequence 8xn<
n=1
¥  in M  converges to a point 

x Î U, we have xn Î U for all but finitely many n. 

Proof:

The forward implication is clear from the remarks preceding the theorem. Let’s see why 

the new condition implies that U is open:

If U is not open , then there is an x Î U such that BΕHxL Ý Uc ¹ Æ for all ¶ > 0. In particu-

lar , for each n there is some xn Î B1�nHxL Ý Uc. But then 8xn<
n=1
¥ Ì Uc and xn Ì x. Thus, 

the new condition also fails.(ÞÜ) à

In slightly different language, the above theorem is saying that the only way to reach a 

member of an open set is by traveling well inside the set; there are no inhabitants on the 

“frontier.” In essence, you cannot visit a single resident without seeing a whole neighbor-

hood!

  CLOSED SETS

Definition: A set F in a metric space HM , dL is said to be a closed set if its complement 

Fc = M\F is open. 

We can draw several immediate (although not terribly enlightening) conclusions:

Example:  

a) Ø  and M  are always closed. (This means that it is possible for a set to be both open 

and closed!) 

b) An arbitrary intersection of closed sets is closed. A finite union of closed sets is closed.

c) Any finite set is closed. Indeed, it is enough to show that 8x< is always closed. (Why?) 

Given any y Î M\8x< (that is, any y ¹ x), note that ¶ = dHx, yL > 0, and hence 

BΕH yL Ì M\8x<. 

d) In R, each of the intervals @a, bD, @a, ¥L, and H-¥, bD is closed. Also, N and D (the Can-

tor set, which we’ll study very soon) are closed sets. (Why?) 

e) In a discrete space, every subset is closed.

f) Sets are not “doors”! For instance, H0, 1D is neither open nor closed in R! (What??)

Ù

As yet, our definition is not terribly useful. It would be nice if we had an intrinsic charac-

terization of closed sets (something that did not depend on a knowledge of open sets), 

something in terms of sequences, for example. For this let’s first make an observation: F 

is closed iff Fc is open.

So F is closed iff

          x Î Fc � BΕHxL Ì Fc     for some Ε > 0 .

But this is the same as saying: F is closed iff

        BΕHxL Ý F ¹ Æ   for every Ε > 0 � x Î F .

        

This is our first characterization of closed sets. Intuitively speaking, closed sets are like 

blobs from a 60’s horror movie. A closed set will devour all points that reside in arbitrary 

proximity to the set.

                      

In order to better understand the nature of these “predatory” sets, let’s bring in a few 

definitions.

Definition: Let A be a subset of M . A point x Î M  is called a limit point of A if every 

neighborhood of x contains a point of A that is different from x itself, that is, if 

HBΕHxL\8x<L Ý A ¹ Æ  for any Ε > 0.

Example:  

a) Suppose you place a sugar cube, a cherry, and a queen-ant around an ant nest. Several 

moments later you take a snapshot of the event that ensues:

                

If we let A be the set of all ants in the picture, then the sugar cube, the cherry, and the 

queen-ant are all limit points of A (assuming that infinitely many ants cluster tighter and 

tighter around each object). Notice that s (sugar) and c (cherry) are not members of A, 

whereas Q Î A.

b) Let A = 8xn<
n=1
¥ Ì M  and suppose xn Ì

d

x Î M . Then x is the only limit point of A.

Note however, that a non-convergent sequence can have a huge number of limit points. 

For instance, let Q be arranged into a sequence 8rn<
n=1
¥ . Then every point of R is a limit 

point of Q. Ù

Definition: A set F is a closed set iff it contains all of its limits points.

Example:  

Let Z be the set of all zombies. Is Z a closed set?

Solution:

To answer this question, we must decide whether Z contains all of its limit points. To 

put this problem in “life or death” terms, suppose x is a limit point of Z. Then, would 

you shoot x with your sniper rifle?

               

If the concentric circles of the sniper scope never present the target in isolation, that is, 

if the heads of other zombies are always present within each target’s circle (no matter 

how small it is), then the target is a limit point of zombies. It will inevitably be “in con-

tact” with the living dead and therefore become a zombie (if it is not already a zombie). 

Therefore it appears that Z is a closed set (and that shooting the target might be the 

most humane course of action). Ù

Notice that the characterization of closed sets in terms of limit points can readily be 

translated into a sequential description. To see why, suppose x is a limit point of some 

set F. Then, by definition, BΕHxL Ý F ¹ Æ for every Ε > 0. But this means that for each 

1 � n, we can find some xn Î B1�nHxL Ý F. 

Thus, the sequence 8xn<
n=1
¥ Ì F converges to x. In other words, any limit point of F is 

necessarily a point of convergence of some sequence of elements of F.

This means that F is closed iff every sequence 8xn<
n=1
¥  that consists of elements of F and 

converges in M É F, must actually converge to an element of F.

We summarize our results in the following theorem:

• Theorem:

Given a set F in HM , dL, the following are equivalent: 

(i) F is closed; that is, Fc = M\F is open.

(ii) If BΕHxL Ý F ¹ Æ for every ¶ > 0, then x Î F. 

(iii) If a sequence 8xn<
n=1
¥ Ì F converges to some point x Î M , then x Î F.

Proof:

(i)�(ii): This is clear from our observations above and the definition of an open set. 

(ii)�(iii): Suppose that 8xn<
n=1
¥ Ì F and xn Ì

d

x Î M  . Then BΕHxL contains infinitely 

many xn for any ¶ > 0, and hence BΕHxL Ý F ¹ Æ for any ¶ > 0. Thus, x Î F by (ii).

(iii)�(ii): If BΕHxL Ý F ¹ Æ for all ¶ > 0, then for each n there is an xn Î B1�nHxL Ý F. The 

sequence 8xn<
n=1
¥  satisfies 8xn<

n=1
¥ Ì F and xn Ì x. Hence, x Î F by (iii).      à

Note: Most authors take (iii) as the definition of a closed set . In other words, condition 

(iii) says that a closed set must contain all of its limit points. That is, “closed” means 

closed under the operation of taking of limits.

Now, as we’ve seen, some sets are neither open nor closed. However, it is possible to 

describe the “open part” of a set and the “closure” of a set. Here’s what we’ll do: 

Definition: Given a set A in HM , dL, we define the interior of A, written intHAL or Ao, to 

be the largest open set contained in A. 

That is,

          

Note that Ao is clearly an open subset of A. 

We next define the closure of A, written clHAL or A , to be the smallest closed set contain-

ing A. That is, 

    clHAL = A = Ý8F : F is closed and A Ì F< .

Please take note of the “dual” nature of our two new definitions. Now it is clear that A is 

a closed set containing A (and necessarily the smallest one). But it’s not so clear which 

points are in A or, more precisely, which points are in A\A. 

We could use a description of A that is a little easier to “test” on a given set A. It follows 

from our last theorem that x Î A iff  BΕHxL Ý A ¹ Æ for every ¶ > 0. The description that 

we are looking for simply removes this last reference to A.

• Proposition:

x Î A iff BΕHxL Ý A ¹ Æ for every ¶ > 0. 

Proof:

(Ü)

If BΕHxL Ý A ¹ Æ for every ¶ > 0, then BΕHxL Ý A ¹ Æ for every ¶ > 0 (since A Ì A), and 

hence x Î A (since closed sets contain their limit points) . 

(Þ)

Now let x Î A and let ¶ > 0. If BΕHxL Ý A = Æ, then A is a subset of HBΕHxLLc, a closed set. 

Thus, A Ì BΕHHxLLc. (Why?) But this is a contradiction, because x Î A while x Ï HBΕHxLLc.(Þ

Ü) à

• Corollary:

x Î A iff there is a sequence 8xn<
n=1
¥ Ì A with xn Ì x.

That is, A is the set of all limits of convergent sequences in A (including limits of con-

stant sequences).

Example:

In HR,   × ¤L:

a)  intHH0, 1DL = H0, 1L       and      clHH0, 1DL = @0, 1D

b)  intJ: 1

n
>

n=1

¥

N = Æ          and      clJ: 1

n
>

n=1

¥

N = : 1

n
>

n=1

¥

Ü 80<

c)  intHQL = Æ                   and      clHQL = R Ù

6     Open and Closed Sets.nb



Before  we start our discussion of open and closed sets, let’s review some facts about 

sequences and subsequences and about equivalent metrics.

                 SUBSEQUENCES

Definition:  Given a sequence 8xn<
n=1
¥ , consider a sequence 8nk<

k=1
¥  of positive integers, 

such that n1 < n2 < n3 < ... . Then the sequence 9xn
k
=
k=1

¥
 is called a subsequence of xn.

Example:

Let M = ;Î, Ì, Ï?. Suppose 8xn<
n=1
¥ Ì M  is defined by

      xn =

Ì if n = 3 p

Î if n = 3 p + 1

Ï if n = 3 p + 2

Let 8nk<
k=1
¥  be given by nk = 3 k. What is 9xn

k
=
k=1

¥
?

Solution:

Notice that n1 = 3, n2 = 6, n3 = 9, etc.

So xn1
= x3 = Ì ,  xn2

= x6 = Ì,  and  xn3
= x9 = Ì,  etc.

Thus, 9xn
k
=
k=1

¥
 is the constant sequence 9Ì=

k=1

¥
. Ù

Example: Let 8xn<
n=1
¥ = 9 1

n
=
n=1

¥
. 

a) Suppose 8nk<
k=1
¥ = 82 k + 1<

k=1
¥ . What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 8x2 k+1<

k=1
¥ = 9 1

2 k+1
=
k=1

¥
= 9 1

3
,

1

5
,

1

7
, ...= .   ª

b) Suppose 8nk<
k=1
¥ = 92k=

k=1

¥
. What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 9x

2k=
k=1

¥
= 9 1

2k
=
k=1

¥
= 9 1

2
,

1

4
,

1

8
, ...=.    ª

c) Suppose 8nk<
k=1
¥ = 82, 1, 3, 4, 5, 6, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

2
, 1,

1

3
,

1

4
, ...=. This sequence does not match the order of 8xn< and therefore 

fails to be a subsequence. Notice that n1 = 2 > 1 = n2.   ª

d) Suppose 8nk<
k=1
¥ = 84, 2, 8, 6, 12, 10, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

4
,

1

2
,

1

8
,

1

6
,

1

12
,

1

10
, ...=. This sequence does not match the order of 8xn< and 

therefore fails to be a subsequence of 8xn<. In particular 8nk<
k=1
¥  is not an increasing 

sequence of positive integers.   ª Ù

Note: Subsequences are useful tools that will later help us to describe such important 

concepts like completeness and compactness. For now however, we will have to be satis-

fied with the simple analysis of the relationship between subsequences, convergence, 

and Cauchy sequences. 

 

• Proposition:

If xn Ì
d

x, then xn
k

Ì
d

x for any subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ .

 

Proof:

We must show that for any Ε > 0, there exists K > 0 such that dIxn
k
, xM < Ε  whenever 

k ³ K.

Since xn Ì
d

x, we know that dHxn, xL < Ε  whenever n ³ N . Setting K = N , notice that 

nk ³ K. Thus, when k ³ N , we have dIxn
k
, xM < Ε . à

• Proposition:

A Cauchy sequence with a convergent subsequence converges.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is a convergent subsequence with 

xn
k

Ì
d

x. We must show that xn Ì
d

x. 

For Ε > 0, let N1 be such that dHxn, xmL <
Ε

2
 whenever n, m ³ N1. Also let N2 be such that 

dIxn
k
, xM <

Ε

2
 whenever k ³ N2. Now let N = max 8N1, N2<. 

If n, m > N , then 

              dHxn, xnmL £ dHxn, xmL <
Ε

2
      and       dHxnm, xL <

Ε

2
 .

Thus,

      dHxn, xL £ dHxn, xnm
L + dHxnm

, xL
           £ dHxn, xmL + dHxnm

, xL

           <
Ε

2
+

Ε

2
= Ε . à

 

• Proposition:

Every subsequence of a Cauchy sequence is itself a Cauchy sequence.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is any  subsequence. For Ε > 0, there is 

some N > 0 such that dHxn, xmL < Ε  whenever n, m ³ N . Notice that nn ³ n and nm ³ m. 

Thus dHxnn
, xnm

L < Ε. à

 

• Proposition:

If every subsequence of 8xn<
n=1
¥  has a further subsequence that converges to x, then 

8xn<
n=1
¥  converges to x.

 

Proof:

Suppose that 8xn<
n=1
¥  does not converge to x, but that every subsequence of 8xn<

n=1
¥  has a 

further subsequence, which converges to x.

If xn Ì
not

x (i.e. if xn does not converge to x), then infinitely many elements of the 

sequence 8xn<
n=1
¥  are further from x than some Ε > 0. That is, the set A = 8xn : dHxn, xL ³ Ε< 

is infinite if Ε is small enough. 

Notice that the elements of A form a subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ . Our assumption 

dictates that some further subsequence 9xn
kt

=
t=1

¥
 converges to x. But all the elements of 

9xn
kt

=
t=1

¥
 are elements of A.

In other words, dIxn
kt
, xM ³ Ε " t Î N, implying that xn

kt
Ì
not

x . (ÞÜ)         à

     EQUIVALENT METRICS

We have already seen that the metric at hand determines which sequences are Cauchy 

and which sequences converge. Later we will see that the convergent sequences in 

HM , dL in turn determine the open and closed sets of HM , dL and therefore the continous 

functions on HM , dL.
Given another metric function Ρ, we have generally no reason to expect the metric spaces 

HM , dL and HM , ΡL to have the same convergent sequences. In this section we would like 

to say a few words about metric functions that generate the same convergent sequences.

Definition: Two metrics d and Ρ on a set M  are said to be equivalent metrics if they 

generate the same convergent sequences: that is, dHxn, xL Ì 0  iff ΡHxn, xL Ì 0.

It might be comforting to know that most metric functions on R (or @0, ¥L) hetherto 

considered are equivalent metrics. The following proposition explains why.

• Proposition:

Let d be a metric on M  and suppose that  Ρ is defined by ΡHx, yL = f HdHx, yLL, where 

f : @0, ¥L�@0, ¥L satisfies the following three properties:

i) f HtL ³ 0 with equality iff t = 0.

ii) f ¢HtL > 0  for t Î H0, ¥L

iii) f ¢¢HtL < 0  for t Î H0, ¥L 
Then d and Ρ are equivalent. 

 

Proof:

Notice that f  is continuous and invertible. Since f ¢HtL > 0, we may state that f -1 is differ-

entiable and therefore continuous. 

Next, we need to observe that if g : U Ì R�R is continuous at 0, then for any sequence 

8tn<
n=1
¥ Ì U with tn Ì 0, we have gHtnL Ì gH0L (this will be discussed later on when we 

consider continuous functions and identify their properties).

Now suppose that 8xn<
n=1
¥ Ì M  with xn Ì

d

x. Then dHxn, xL Ì 0. Since f  is continuous, 

we see that f HdHxn, xLL Ì f H0L = 0 by setting tn = dHxn, xL. 
Thus,

 dHxn, xL Ì 0 � f HdHxn, xLL = ΡHxn, xL Ì 0.

On the other hand, if ΡHxn, xL Ì 0, then dHxn, xL = f -1HΡHxn, xLL Ì 0 because f -1 is also 

continuous at 0. We have thus established that dHxn, xL Ì 0  iff ΡHxn, xL Ì 0. Hence 

d and Ρ are equivalent.    à

Example:

The following are all equivalent metrics on R:

• dHx, yL =  x - y¤        • ΡHx, yL =  x - y¤        • ¶Hx, yL =
 x- y¤

1+ x- y¤

• ΖHx, yL = lnH x - y¤ + 1L       • jHx, yL =
lnH x- y¤+1L

1+ lnH x- y¤+1L
Ù

Note: Equivalent metrics preserve convergent sequences. Must they also have the same 

cauchy sequences? The answer is NO, as we can verify in the following example.

Example:

Let M = H0, ¥L. Then dHx, yL =  x - y¤ and ΡHx, yL = ¢ 1

x
-

1

y
¦ are equivalent metrics on M  

that do not generate the same Cauchy sequences. 

To see that d and Ρ are equivalent, observe that the function f HtL =
1

t
 is continuous on 

H0, ¥L. Notice also that f -1HtL = f HtL. That is, f  is its own inverse. 

Now, if xn Ì
d

x, then f HxnL Ì f HxL, or   f HxnL - f HxL¤ Ì 0. Hence xn Ì
d

x implies that 

¢ 1

xn

-
1

x
¦ Ì 0 or xn Ì

Ρ

x . 

On the other hand, xn Ì
Ρ

x implies that f -1HxnL Ì f -1HxL. 
That is, 

xn Ì
Ρ

x � ¡ f -1HxnL - f -1HxL¥ = ¢ 1

xn

-
1

x
¦ Ì 0 .

This in turn implies that ¢ f J 1

xn

M - f J 1

x
M¦ =  xn - x¤ Ì 0.

Thus we have shown that d and Ρ are equivalent.  ª

To see that d and Ρ fail to generate the same Cauchy sequences, notice that : 1

n
>

n=1

¥

 is a 

Cauchy sequence when it is considered under the metric dHx, yL =  x - y¤. Under the 

metric Ρ however, ΡJ 1

n
,

1

m
N =  n - m¤ ³ 1 if m ¹ n. 

Thus : 1

n
>

n=1

¥

 is not Cauchy under Ρ.   ª   Ù

Example:

Let M = R
n. 

Then d1Hx, yL = ÈÈ x - y ÈÈ1 , d2Hx, yL = ÈÈ x - y ÈÈ2 , and d¥Hx, yL = ÈÈ x - y ÈÈ¥  are all equiva-

lent metrics on Rn because

      ÈÈ x - y ÈÈ¥ £ ÈÈ x - y ÈÈ2 £ ÈÈ x - y ÈÈ1
while

 ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ¥    and   ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ2. 

We should verify that d1, d2, and d3 all generate the same Cauchy sequences 

on Rn.              Ù

The last example is very important as it allows us to make the following definition:

Definition: Given two metric spaces HM , dL and HN , ΡL, we can define a metric on the 

product M ´ N  in a variety of ways. Our only requirement is that a sequence of pairs 

Han, xnL in M ´ N  should converge precisely when both coordinate sequences 8an<
n=1
¥ and 

8xn<
n=1
¥  converge in HM , dL and HN , ΡL, respectively.

Each of the following define metrics on M ´ N  that enjoy this property. Moreover, they 

are equivalent :

• d1HHa, xL, Hb, yLL = dHa, bL + ΡHx, yL

• d2HHa, xL, Hb, yLL = IdHa, bL2 + ΡHx, yL2M1�2

• d¥HHa, xL, Hb, yLL = max 8dHa, bL, ΡHx, yL<
Henceforth, any implicit reference to “the” metric on M ´ N , sometimes called the prod-

uct metric, will mean one of d1, d2, or d¥. Any one of them will serve equally well. 

               OPEN SETS

Definition: A set U in a metric space HM , dL is called an open set if  U contains a neigh-

borhood of each of its points. In other words, U is an open set if, given x Î U, there is 

some Ε > 0 such that BΕHxL Ì U.

Example:  

a) In any metric space, the whole space M  is an open set. The empty set Æ is also open 

(by default). 

b) In R, any open interval is an open set. Indeed, given x Î Ha, bL, let Ε = min 8x - a, b - x<. 
Then Ε > 0  and Hx - Ε, x + ΕL Ì Ha, bL. The cases Ha, ¥L and H-¥, bL are similar. 

While we’re at it, notice that the interval @0, 1L, for example, is not open in R because it 

does not contain an entire neighborhood of 0.

c) In a discrete space, B1HxL = 8x< is an open set for any x. It follows that every subset of a 

discrete space is open. Ù

Before we get too carried away, we should follow the lead suggested by the last example 

and check that every open ball is in fact an open set.

• Proposition:

For any x Î M  and any Ε > 0, the open ball BΕHxL is an open set.

Proof:

Consult the drawing below to understand the motivation behind the argument of the 

proof.

                 

Let y Î BΕHxL. Then dHx, yL < Ε  and hence ∆ = Ε - dHx, yL > 0.

We will show that B∆H yL Ì BΕHxL. 
Indeed, if dH y, zL < ∆, then, by the triangle inequality

            dHx, zL £ dHx, yL + dH y, zL < dHx, yL + ∆ = dHx, yL + Ε - dHx, yL = Ε.             à

Let’s collect our thoughts. First, every open ball is open. Next, it follows from the defini-

tion of open sets that an open set must actually be a union of open balls . In fact, if  U is 

open, then U = Ü8BΕHxL : BΕHxL Ì U<. 
Moreover, any arbitrary union of open balls is again an open set. Here’s what all of this 

means:

• Theorem:

An arbitrary union of open sets is again open. That is, if 8UΑ<ΑÎA is any collection of open 

sets, then V = Ü
ΑÎA

UΑ is open.

Proof:

If x Î V , then x Î UΑ for some Α Î A. But then, since UΑ is open, BΕHxL Ì UΑ Ì V  for 

some Ε > 0. à

Intersections aren’t nearly as generous: 

• Theorem:

A finite intersection of open sets is open. That is, if each of  U1, … , Un is open, then so 

is V = U1 Ý … Ý Un . 

Proof:

If x Î V , then x Î Ui for all i = 1, … , n. Thus, for each i there is an ¶i > 0 such that 

BΕi
Ì Ui. But then, setting Ε = min 8Ε1, ..., Εn< > 0, we have BΕHxL Ì Ý

i=1

n

Ui = V .    à

Example: 

The word “finite” is crucial in the above theorem because Ý
n=1

¥

J-
1

n
,

1

n
N = 80< , and 80< is 

not open in R. Ù

Now, since the real line R is of special interest to us, let’s characterize the open subsets 

of  R . This will come in handy later. But it should be stressed that while this characteriza-

tion holds for  R, it does not have a satisfactory analogue even in R2 . (As we will see in a 

later chapter, not every open set in the plane can be written as a union of disjoint open 

disks.)

• Theorem:

If U is an open subset of R, then U may be written as a countable union of disjoint open 

intervals. That is, U = Ü
n=1

¥

In , where In = Han, bnL (these may be unbounded) and 

In Ý Im = Æ for n ¹ m.

Proof:

We know that U can be written as a union of open intervals (because each x Î U is in 

some open interval I with I Ì U). What we need to show is that U is a union of disjoint 

open intervals (such a union must be countable(to see why, check exercise 2.15 on 

Carother’s)) . 

We first claim that each x Î U is contained in a maximal open interval Ix Ì U in the 

sense that if x Î I Ì U , where I is an open interval, then we must have I Ì Ix. Indeed, 

given x Î U, let 

       ax = inf 8a : Ha, xD Ì U<     and     bx = sup 8b : @x, bM Ì U= .

Then, Ix = Hax, bxL satisfies x Î Ix Ì U, and Ix is clearly maximal. (Check this!) 

Next, notice that for any x, y Î U we have either Ix Ý Iy = Æ  or Ix = Iy. Why? Because if 

Ix Ý Iy ¹ Æ , then Ix Ü Iy is an open interval containing both Ix and Iy. By maximality we 

would then have Ix = Iy. It follows then that U is the union of disjoint (maximal) inter-

vals: U = Ü
xÎU

Ix . à

Now any time we make up a new definition in a metric space setting, it is usually very 

helpful to find an equivalent version stated exclusively in terms of sequences. To moti-

vate this in the particular case of open sets, let’s recall:

           xn Ì x � 8xn< is eventually in BΕHxL for any Ε > 0

and hence

            xn Ì x � 8xn< is eventually in U, for any open set U containing x .

This last statements essentially characterizes open sets:

• Theorem:

A set U in HM , dL is open iff, whenever a sequence 8xn<
n=1
¥  in M  converges to a point 

x Î U, we have xn Î U for all but finitely many n. 

Proof:

The forward implication is clear from the remarks preceding the theorem. Let’s see why 

the new condition implies that U is open:

If U is not open , then there is an x Î U such that BΕHxL Ý Uc ¹ Æ for all ¶ > 0. In particu-

lar , for each n there is some xn Î B1�nHxL Ý Uc. But then 8xn<
n=1
¥ Ì Uc and xn Ì x. Thus, 

the new condition also fails.(ÞÜ) à

In slightly different language, the above theorem is saying that the only way to reach a 

member of an open set is by traveling well inside the set; there are no inhabitants on the 

“frontier.” In essence, you cannot visit a single resident without seeing a whole neighbor-

hood!

  CLOSED SETS

Definition: A set F in a metric space HM , dL is said to be a closed set if its complement 

Fc = M\F is open. 

We can draw several immediate (although not terribly enlightening) conclusions:

Example:  

a) Ø  and M  are always closed. (This means that it is possible for a set to be both open 

and closed!) 

b) An arbitrary intersection of closed sets is closed. A finite union of closed sets is closed.

c) Any finite set is closed. Indeed, it is enough to show that 8x< is always closed. (Why?) 

Given any y Î M\8x< (that is, any y ¹ x), note that ¶ = dHx, yL > 0, and hence 

BΕH yL Ì M\8x<. 

d) In R, each of the intervals @a, bD, @a, ¥L, and H-¥, bD is closed. Also, N and D (the Can-

tor set, which we’ll study very soon) are closed sets. (Why?) 

e) In a discrete space, every subset is closed.

f) Sets are not “doors”! For instance, H0, 1D is neither open nor closed in R! (What??)

Ù

As yet, our definition is not terribly useful. It would be nice if we had an intrinsic charac-

terization of closed sets (something that did not depend on a knowledge of open sets), 

something in terms of sequences, for example. For this let’s first make an observation: F 

is closed iff Fc is open.

So F is closed iff

          x Î Fc � BΕHxL Ì Fc     for some Ε > 0 .

But this is the same as saying: F is closed iff

        BΕHxL Ý F ¹ Æ   for every Ε > 0 � x Î F .

        

This is our first characterization of closed sets. Intuitively speaking, closed sets are like 

blobs from a 60’s horror movie. A closed set will devour all points that reside in arbitrary 

proximity to the set.

                      

In order to better understand the nature of these “predatory” sets, let’s bring in a few 

definitions.

Definition: Let A be a subset of M . A point x Î M  is called a limit point of A if every 

neighborhood of x contains a point of A that is different from x itself, that is, if 

HBΕHxL\8x<L Ý A ¹ Æ  for any Ε > 0.

Example:  

a) Suppose you place a sugar cube, a cherry, and a queen-ant around an ant nest. Several 

moments later you take a snapshot of the event that ensues:

                

If we let A be the set of all ants in the picture, then the sugar cube, the cherry, and the 

queen-ant are all limit points of A (assuming that infinitely many ants cluster tighter and 

tighter around each object). Notice that s (sugar) and c (cherry) are not members of A, 

whereas Q Î A.

b) Let A = 8xn<
n=1
¥ Ì M  and suppose xn Ì

d

x Î M . Then x is the only limit point of A.

Note however, that a non-convergent sequence can have a huge number of limit points. 

For instance, let Q be arranged into a sequence 8rn<
n=1
¥ . Then every point of R is a limit 

point of Q. Ù

Definition: A set F is a closed set iff it contains all of its limits points.

Example:  

Let Z be the set of all zombies. Is Z a closed set?

Solution:

To answer this question, we must decide whether Z contains all of its limit points. To 

put this problem in “life or death” terms, suppose x is a limit point of Z. Then, would 

you shoot x with your sniper rifle?

               

If the concentric circles of the sniper scope never present the target in isolation, that is, 

if the heads of other zombies are always present within each target’s circle (no matter 

how small it is), then the target is a limit point of zombies. It will inevitably be “in con-

tact” with the living dead and therefore become a zombie (if it is not already a zombie). 

Therefore it appears that Z is a closed set (and that shooting the target might be the 

most humane course of action). Ù

Notice that the characterization of closed sets in terms of limit points can readily be 

translated into a sequential description. To see why, suppose x is a limit point of some 

set F. Then, by definition, BΕHxL Ý F ¹ Æ for every Ε > 0. But this means that for each 

1 � n, we can find some xn Î B1�nHxL Ý F. 

Thus, the sequence 8xn<
n=1
¥ Ì F converges to x. In other words, any limit point of F is 

necessarily a point of convergence of some sequence of elements of F.

This means that F is closed iff every sequence 8xn<
n=1
¥  that consists of elements of F and 

converges in M É F, must actually converge to an element of F.

We summarize our results in the following theorem:

• Theorem:

Given a set F in HM , dL, the following are equivalent: 

(i) F is closed; that is, Fc = M\F is open.

(ii) If BΕHxL Ý F ¹ Æ for every ¶ > 0, then x Î F. 

(iii) If a sequence 8xn<
n=1
¥ Ì F converges to some point x Î M , then x Î F.

Proof:

(i)�(ii): This is clear from our observations above and the definition of an open set. 

(ii)�(iii): Suppose that 8xn<
n=1
¥ Ì F and xn Ì

d

x Î M  . Then BΕHxL contains infinitely 

many xn for any ¶ > 0, and hence BΕHxL Ý F ¹ Æ for any ¶ > 0. Thus, x Î F by (ii).

(iii)�(ii): If BΕHxL Ý F ¹ Æ for all ¶ > 0, then for each n there is an xn Î B1�nHxL Ý F. The 

sequence 8xn<
n=1
¥  satisfies 8xn<

n=1
¥ Ì F and xn Ì x. Hence, x Î F by (iii).      à

Note: Most authors take (iii) as the definition of a closed set . In other words, condition 

(iii) says that a closed set must contain all of its limit points. That is, “closed” means 

closed under the operation of taking of limits.

Now, as we’ve seen, some sets are neither open nor closed. However, it is possible to 

describe the “open part” of a set and the “closure” of a set. Here’s what we’ll do: 

Definition: Given a set A in HM , dL, we define the interior of A, written intHAL or Ao, to 

be the largest open set contained in A. 

That is,

          

Note that Ao is clearly an open subset of A. 

We next define the closure of A, written clHAL or A , to be the smallest closed set contain-

ing A. That is, 

    clHAL = A = Ý8F : F is closed and A Ì F< .

Please take note of the “dual” nature of our two new definitions. Now it is clear that A is 

a closed set containing A (and necessarily the smallest one). But it’s not so clear which 

points are in A or, more precisely, which points are in A\A. 

We could use a description of A that is a little easier to “test” on a given set A. It follows 

from our last theorem that x Î A iff  BΕHxL Ý A ¹ Æ for every ¶ > 0. The description that 

we are looking for simply removes this last reference to A.

• Proposition:

x Î A iff BΕHxL Ý A ¹ Æ for every ¶ > 0. 

Proof:

(Ü)

If BΕHxL Ý A ¹ Æ for every ¶ > 0, then BΕHxL Ý A ¹ Æ for every ¶ > 0 (since A Ì A), and 

hence x Î A (since closed sets contain their limit points) . 

(Þ)

Now let x Î A and let ¶ > 0. If BΕHxL Ý A = Æ, then A is a subset of HBΕHxLLc, a closed set. 

Thus, A Ì BΕHHxLLc. (Why?) But this is a contradiction, because x Î A while x Ï HBΕHxLLc.(Þ

Ü) à

• Corollary:

x Î A iff there is a sequence 8xn<
n=1
¥ Ì A with xn Ì x.

That is, A is the set of all limits of convergent sequences in A (including limits of con-

stant sequences).

Example:

In HR,   × ¤L:

a)  intHH0, 1DL = H0, 1L       and      clHH0, 1DL = @0, 1D

b)  intJ: 1

n
>

n=1

¥

N = Æ          and      clJ: 1

n
>

n=1

¥

N = : 1

n
>

n=1

¥

Ü 80<

c)  intHQL = Æ                   and      clHQL = R Ù

Open and Closed Sets.nb    7



Before  we start our discussion of open and closed sets, let’s review some facts about 

sequences and subsequences and about equivalent metrics.

                 SUBSEQUENCES

Definition:  Given a sequence 8xn<
n=1
¥ , consider a sequence 8nk<

k=1
¥  of positive integers, 

such that n1 < n2 < n3 < ... . Then the sequence 9xn
k
=
k=1

¥
 is called a subsequence of xn.

Example:

Let M = ;Î, Ì, Ï?. Suppose 8xn<
n=1
¥ Ì M  is defined by

      xn =

Ì if n = 3 p

Î if n = 3 p + 1

Ï if n = 3 p + 2

Let 8nk<
k=1
¥  be given by nk = 3 k. What is 9xn

k
=
k=1

¥
?

Solution:

Notice that n1 = 3, n2 = 6, n3 = 9, etc.

So xn1
= x3 = Ì ,  xn2

= x6 = Ì,  and  xn3
= x9 = Ì,  etc.

Thus, 9xn
k
=
k=1

¥
 is the constant sequence 9Ì=

k=1

¥
. Ù

Example: Let 8xn<
n=1
¥ = 9 1

n
=
n=1

¥
. 

a) Suppose 8nk<
k=1
¥ = 82 k + 1<

k=1
¥ . What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 8x2 k+1<

k=1
¥ = 9 1

2 k+1
=
k=1

¥
= 9 1

3
,

1

5
,

1

7
, ...= .   ª

b) Suppose 8nk<
k=1
¥ = 92k=

k=1

¥
. What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 9x

2k=
k=1

¥
= 9 1

2k
=
k=1

¥
= 9 1

2
,

1

4
,

1

8
, ...=.    ª

c) Suppose 8nk<
k=1
¥ = 82, 1, 3, 4, 5, 6, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

2
, 1,

1

3
,

1

4
, ...=. This sequence does not match the order of 8xn< and therefore 

fails to be a subsequence. Notice that n1 = 2 > 1 = n2.   ª

d) Suppose 8nk<
k=1
¥ = 84, 2, 8, 6, 12, 10, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

4
,

1

2
,

1

8
,

1

6
,

1

12
,

1

10
, ...=. This sequence does not match the order of 8xn< and 

therefore fails to be a subsequence of 8xn<. In particular 8nk<
k=1
¥  is not an increasing 

sequence of positive integers.   ª Ù

Note: Subsequences are useful tools that will later help us to describe such important 

concepts like completeness and compactness. For now however, we will have to be satis-

fied with the simple analysis of the relationship between subsequences, convergence, 

and Cauchy sequences. 

 

• Proposition:

If xn Ì
d

x, then xn
k

Ì
d

x for any subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ .

 

Proof:

We must show that for any Ε > 0, there exists K > 0 such that dIxn
k
, xM < Ε  whenever 

k ³ K.

Since xn Ì
d

x, we know that dHxn, xL < Ε  whenever n ³ N . Setting K = N , notice that 

nk ³ K. Thus, when k ³ N , we have dIxn
k
, xM < Ε . à

• Proposition:

A Cauchy sequence with a convergent subsequence converges.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is a convergent subsequence with 

xn
k

Ì
d

x. We must show that xn Ì
d

x. 

For Ε > 0, let N1 be such that dHxn, xmL <
Ε

2
 whenever n, m ³ N1. Also let N2 be such that 

dIxn
k
, xM <

Ε

2
 whenever k ³ N2. Now let N = max 8N1, N2<. 

If n, m > N , then 

              dHxn, xnmL £ dHxn, xmL <
Ε

2
      and       dHxnm, xL <

Ε

2
 .

Thus,

      dHxn, xL £ dHxn, xnm
L + dHxnm

, xL
           £ dHxn, xmL + dHxnm

, xL

           <
Ε

2
+

Ε

2
= Ε . à

 

• Proposition:

Every subsequence of a Cauchy sequence is itself a Cauchy sequence.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is any  subsequence. For Ε > 0, there is 

some N > 0 such that dHxn, xmL < Ε  whenever n, m ³ N . Notice that nn ³ n and nm ³ m. 

Thus dHxnn
, xnm

L < Ε. à

 

• Proposition:

If every subsequence of 8xn<
n=1
¥  has a further subsequence that converges to x, then 

8xn<
n=1
¥  converges to x.

 

Proof:

Suppose that 8xn<
n=1
¥  does not converge to x, but that every subsequence of 8xn<

n=1
¥  has a 

further subsequence, which converges to x.

If xn Ì
not

x (i.e. if xn does not converge to x), then infinitely many elements of the 

sequence 8xn<
n=1
¥  are further from x than some Ε > 0. That is, the set A = 8xn : dHxn, xL ³ Ε< 

is infinite if Ε is small enough. 

Notice that the elements of A form a subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ . Our assumption 

dictates that some further subsequence 9xn
kt

=
t=1

¥
 converges to x. But all the elements of 

9xn
kt

=
t=1

¥
 are elements of A.

In other words, dIxn
kt
, xM ³ Ε " t Î N, implying that xn

kt
Ì
not

x . (ÞÜ)         à

     EQUIVALENT METRICS

We have already seen that the metric at hand determines which sequences are Cauchy 

and which sequences converge. Later we will see that the convergent sequences in 

HM , dL in turn determine the open and closed sets of HM , dL and therefore the continous 

functions on HM , dL.
Given another metric function Ρ, we have generally no reason to expect the metric spaces 

HM , dL and HM , ΡL to have the same convergent sequences. In this section we would like 

to say a few words about metric functions that generate the same convergent sequences.

Definition: Two metrics d and Ρ on a set M  are said to be equivalent metrics if they 

generate the same convergent sequences: that is, dHxn, xL Ì 0  iff ΡHxn, xL Ì 0.

It might be comforting to know that most metric functions on R (or @0, ¥L) hetherto 

considered are equivalent metrics. The following proposition explains why.

• Proposition:

Let d be a metric on M  and suppose that  Ρ is defined by ΡHx, yL = f HdHx, yLL, where 

f : @0, ¥L�@0, ¥L satisfies the following three properties:

i) f HtL ³ 0 with equality iff t = 0.

ii) f ¢HtL > 0  for t Î H0, ¥L

iii) f ¢¢HtL < 0  for t Î H0, ¥L 
Then d and Ρ are equivalent. 

 

Proof:

Notice that f  is continuous and invertible. Since f ¢HtL > 0, we may state that f -1 is differ-

entiable and therefore continuous. 

Next, we need to observe that if g : U Ì R�R is continuous at 0, then for any sequence 

8tn<
n=1
¥ Ì U with tn Ì 0, we have gHtnL Ì gH0L (this will be discussed later on when we 

consider continuous functions and identify their properties).

Now suppose that 8xn<
n=1
¥ Ì M  with xn Ì

d

x. Then dHxn, xL Ì 0. Since f  is continuous, 

we see that f HdHxn, xLL Ì f H0L = 0 by setting tn = dHxn, xL. 
Thus,

 dHxn, xL Ì 0 � f HdHxn, xLL = ΡHxn, xL Ì 0.

On the other hand, if ΡHxn, xL Ì 0, then dHxn, xL = f -1HΡHxn, xLL Ì 0 because f -1 is also 

continuous at 0. We have thus established that dHxn, xL Ì 0  iff ΡHxn, xL Ì 0. Hence 

d and Ρ are equivalent.    à

Example:

The following are all equivalent metrics on R:

• dHx, yL =  x - y¤        • ΡHx, yL =  x - y¤        • ¶Hx, yL =
 x- y¤

1+ x- y¤

• ΖHx, yL = lnH x - y¤ + 1L       • jHx, yL =
lnH x- y¤+1L

1+ lnH x- y¤+1L
Ù

Note: Equivalent metrics preserve convergent sequences. Must they also have the same 

cauchy sequences? The answer is NO, as we can verify in the following example.

Example:

Let M = H0, ¥L. Then dHx, yL =  x - y¤ and ΡHx, yL = ¢ 1

x
-

1

y
¦ are equivalent metrics on M  

that do not generate the same Cauchy sequences. 

To see that d and Ρ are equivalent, observe that the function f HtL =
1

t
 is continuous on 

H0, ¥L. Notice also that f -1HtL = f HtL. That is, f  is its own inverse. 

Now, if xn Ì
d

x, then f HxnL Ì f HxL, or   f HxnL - f HxL¤ Ì 0. Hence xn Ì
d

x implies that 

¢ 1

xn

-
1

x
¦ Ì 0 or xn Ì

Ρ

x . 

On the other hand, xn Ì
Ρ

x implies that f -1HxnL Ì f -1HxL. 
That is, 

xn Ì
Ρ

x � ¡ f -1HxnL - f -1HxL¥ = ¢ 1

xn

-
1

x
¦ Ì 0 .

This in turn implies that ¢ f J 1

xn

M - f J 1

x
M¦ =  xn - x¤ Ì 0.

Thus we have shown that d and Ρ are equivalent.  ª

To see that d and Ρ fail to generate the same Cauchy sequences, notice that : 1

n
>

n=1

¥

 is a 

Cauchy sequence when it is considered under the metric dHx, yL =  x - y¤. Under the 

metric Ρ however, ΡJ 1

n
,

1

m
N =  n - m¤ ³ 1 if m ¹ n. 

Thus : 1

n
>

n=1

¥

 is not Cauchy under Ρ.   ª   Ù

Example:

Let M = R
n. 

Then d1Hx, yL = ÈÈ x - y ÈÈ1 , d2Hx, yL = ÈÈ x - y ÈÈ2 , and d¥Hx, yL = ÈÈ x - y ÈÈ¥  are all equiva-

lent metrics on Rn because

      ÈÈ x - y ÈÈ¥ £ ÈÈ x - y ÈÈ2 £ ÈÈ x - y ÈÈ1
while

 ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ¥    and   ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ2. 

We should verify that d1, d2, and d3 all generate the same Cauchy sequences 

on Rn.              Ù

The last example is very important as it allows us to make the following definition:

Definition: Given two metric spaces HM , dL and HN , ΡL, we can define a metric on the 

product M ´ N  in a variety of ways. Our only requirement is that a sequence of pairs 

Han, xnL in M ´ N  should converge precisely when both coordinate sequences 8an<
n=1
¥ and 

8xn<
n=1
¥  converge in HM , dL and HN , ΡL, respectively.

Each of the following define metrics on M ´ N  that enjoy this property. Moreover, they 

are equivalent :

• d1HHa, xL, Hb, yLL = dHa, bL + ΡHx, yL

• d2HHa, xL, Hb, yLL = IdHa, bL2 + ΡHx, yL2M1�2

• d¥HHa, xL, Hb, yLL = max 8dHa, bL, ΡHx, yL<
Henceforth, any implicit reference to “the” metric on M ´ N , sometimes called the prod-

uct metric, will mean one of d1, d2, or d¥. Any one of them will serve equally well. 

               OPEN SETS

Definition: A set U in a metric space HM , dL is called an open set if  U contains a neigh-

borhood of each of its points. In other words, U is an open set if, given x Î U, there is 

some Ε > 0 such that BΕHxL Ì U.

Example:  

a) In any metric space, the whole space M  is an open set. The empty set Æ is also open 

(by default). 

b) In R, any open interval is an open set. Indeed, given x Î Ha, bL, let Ε = min 8x - a, b - x<. 
Then Ε > 0  and Hx - Ε, x + ΕL Ì Ha, bL. The cases Ha, ¥L and H-¥, bL are similar. 

While we’re at it, notice that the interval @0, 1L, for example, is not open in R because it 

does not contain an entire neighborhood of 0.

c) In a discrete space, B1HxL = 8x< is an open set for any x. It follows that every subset of a 

discrete space is open. Ù

Before we get too carried away, we should follow the lead suggested by the last example 

and check that every open ball is in fact an open set.

• Proposition:

For any x Î M  and any Ε > 0, the open ball BΕHxL is an open set.

Proof:

Consult the drawing below to understand the motivation behind the argument of the 

proof.

                 

Let y Î BΕHxL. Then dHx, yL < Ε  and hence ∆ = Ε - dHx, yL > 0.

We will show that B∆H yL Ì BΕHxL. 
Indeed, if dH y, zL < ∆, then, by the triangle inequality

            dHx, zL £ dHx, yL + dH y, zL < dHx, yL + ∆ = dHx, yL + Ε - dHx, yL = Ε.             à

Let’s collect our thoughts. First, every open ball is open. Next, it follows from the defini-

tion of open sets that an open set must actually be a union of open balls . In fact, if  U is 

open, then U = Ü8BΕHxL : BΕHxL Ì U<. 
Moreover, any arbitrary union of open balls is again an open set. Here’s what all of this 

means:

• Theorem:

An arbitrary union of open sets is again open. That is, if 8UΑ<ΑÎA is any collection of open 

sets, then V = Ü
ΑÎA

UΑ is open.

Proof:

If x Î V , then x Î UΑ for some Α Î A. But then, since UΑ is open, BΕHxL Ì UΑ Ì V  for 

some Ε > 0. à

Intersections aren’t nearly as generous: 

• Theorem:

A finite intersection of open sets is open. That is, if each of  U1, … , Un is open, then so 

is V = U1 Ý … Ý Un . 

Proof:

If x Î V , then x Î Ui for all i = 1, … , n. Thus, for each i there is an ¶i > 0 such that 

BΕi
Ì Ui. But then, setting Ε = min 8Ε1, ..., Εn< > 0, we have BΕHxL Ì Ý

i=1

n

Ui = V .    à

Example: 

The word “finite” is crucial in the above theorem because Ý
n=1

¥

J-
1

n
,

1

n
N = 80< , and 80< is 

not open in R. Ù

Now, since the real line R is of special interest to us, let’s characterize the open subsets 

of  R . This will come in handy later. But it should be stressed that while this characteriza-

tion holds for  R, it does not have a satisfactory analogue even in R2 . (As we will see in a 

later chapter, not every open set in the plane can be written as a union of disjoint open 

disks.)

• Theorem:

If U is an open subset of R, then U may be written as a countable union of disjoint open 

intervals. That is, U = Ü
n=1

¥

In , where In = Han, bnL (these may be unbounded) and 

In Ý Im = Æ for n ¹ m.

Proof:

We know that U can be written as a union of open intervals (because each x Î U is in 

some open interval I with I Ì U). What we need to show is that U is a union of disjoint 

open intervals (such a union must be countable(to see why, check exercise 2.15 on 

Carother’s)) . 

We first claim that each x Î U is contained in a maximal open interval Ix Ì U in the 

sense that if x Î I Ì U , where I is an open interval, then we must have I Ì Ix. Indeed, 

given x Î U, let 

       ax = inf 8a : Ha, xD Ì U<     and     bx = sup 8b : @x, bM Ì U= .

Then, Ix = Hax, bxL satisfies x Î Ix Ì U, and Ix is clearly maximal. (Check this!) 

Next, notice that for any x, y Î U we have either Ix Ý Iy = Æ  or Ix = Iy. Why? Because if 

Ix Ý Iy ¹ Æ , then Ix Ü Iy is an open interval containing both Ix and Iy. By maximality we 

would then have Ix = Iy. It follows then that U is the union of disjoint (maximal) inter-

vals: U = Ü
xÎU

Ix . à

Now any time we make up a new definition in a metric space setting, it is usually very 

helpful to find an equivalent version stated exclusively in terms of sequences. To moti-

vate this in the particular case of open sets, let’s recall:

           xn Ì x � 8xn< is eventually in BΕHxL for any Ε > 0

and hence

            xn Ì x � 8xn< is eventually in U, for any open set U containing x .

This last statements essentially characterizes open sets:

• Theorem:

A set U in HM , dL is open iff, whenever a sequence 8xn<
n=1
¥  in M  converges to a point 

x Î U, we have xn Î U for all but finitely many n. 

Proof:

The forward implication is clear from the remarks preceding the theorem. Let’s see why 

the new condition implies that U is open:

If U is not open , then there is an x Î U such that BΕHxL Ý Uc ¹ Æ for all ¶ > 0. In particu-

lar , for each n there is some xn Î B1�nHxL Ý Uc. But then 8xn<
n=1
¥ Ì Uc and xn Ì x. Thus, 

the new condition also fails.(ÞÜ) à

In slightly different language, the above theorem is saying that the only way to reach a 

member of an open set is by traveling well inside the set; there are no inhabitants on the 

“frontier.” In essence, you cannot visit a single resident without seeing a whole neighbor-

hood!

  CLOSED SETS

Definition: A set F in a metric space HM , dL is said to be a closed set if its complement 

Fc = M\F is open. 

We can draw several immediate (although not terribly enlightening) conclusions:

Example:  

a) Ø  and M  are always closed. (This means that it is possible for a set to be both open 

and closed!) 

b) An arbitrary intersection of closed sets is closed. A finite union of closed sets is closed.

c) Any finite set is closed. Indeed, it is enough to show that 8x< is always closed. (Why?) 

Given any y Î M\8x< (that is, any y ¹ x), note that ¶ = dHx, yL > 0, and hence 

BΕH yL Ì M\8x<. 

d) In R, each of the intervals @a, bD, @a, ¥L, and H-¥, bD is closed. Also, N and D (the Can-

tor set, which we’ll study very soon) are closed sets. (Why?) 

e) In a discrete space, every subset is closed.

f) Sets are not “doors”! For instance, H0, 1D is neither open nor closed in R! (What??)

Ù

As yet, our definition is not terribly useful. It would be nice if we had an intrinsic charac-

terization of closed sets (something that did not depend on a knowledge of open sets), 

something in terms of sequences, for example. For this let’s first make an observation: F 

is closed iff Fc is open.

So F is closed iff

          x Î Fc � BΕHxL Ì Fc     for some Ε > 0 .

But this is the same as saying: F is closed iff

        BΕHxL Ý F ¹ Æ   for every Ε > 0 � x Î F .

        

This is our first characterization of closed sets. Intuitively speaking, closed sets are like 

blobs from a 60’s horror movie. A closed set will devour all points that reside in arbitrary 

proximity to the set.

                      

In order to better understand the nature of these “predatory” sets, let’s bring in a few 

definitions.

Definition: Let A be a subset of M . A point x Î M  is called a limit point of A if every 

neighborhood of x contains a point of A that is different from x itself, that is, if 

HBΕHxL\8x<L Ý A ¹ Æ  for any Ε > 0.

Example:  

a) Suppose you place a sugar cube, a cherry, and a queen-ant around an ant nest. Several 

moments later you take a snapshot of the event that ensues:

                

If we let A be the set of all ants in the picture, then the sugar cube, the cherry, and the 

queen-ant are all limit points of A (assuming that infinitely many ants cluster tighter and 

tighter around each object). Notice that s (sugar) and c (cherry) are not members of A, 

whereas Q Î A.

b) Let A = 8xn<
n=1
¥ Ì M  and suppose xn Ì

d

x Î M . Then x is the only limit point of A.

Note however, that a non-convergent sequence can have a huge number of limit points. 

For instance, let Q be arranged into a sequence 8rn<
n=1
¥ . Then every point of R is a limit 

point of Q. Ù

Definition: A set F is a closed set iff it contains all of its limits points.

Example:  

Let Z be the set of all zombies. Is Z a closed set?

Solution:

To answer this question, we must decide whether Z contains all of its limit points. To 

put this problem in “life or death” terms, suppose x is a limit point of Z. Then, would 

you shoot x with your sniper rifle?

               

If the concentric circles of the sniper scope never present the target in isolation, that is, 

if the heads of other zombies are always present within each target’s circle (no matter 

how small it is), then the target is a limit point of zombies. It will inevitably be “in con-

tact” with the living dead and therefore become a zombie (if it is not already a zombie). 

Therefore it appears that Z is a closed set (and that shooting the target might be the 

most humane course of action). Ù

Notice that the characterization of closed sets in terms of limit points can readily be 

translated into a sequential description. To see why, suppose x is a limit point of some 

set F. Then, by definition, BΕHxL Ý F ¹ Æ for every Ε > 0. But this means that for each 

1 � n, we can find some xn Î B1�nHxL Ý F. 

Thus, the sequence 8xn<
n=1
¥ Ì F converges to x. In other words, any limit point of F is 

necessarily a point of convergence of some sequence of elements of F.

This means that F is closed iff every sequence 8xn<
n=1
¥  that consists of elements of F and 

converges in M É F, must actually converge to an element of F.

We summarize our results in the following theorem:

• Theorem:

Given a set F in HM , dL, the following are equivalent: 

(i) F is closed; that is, Fc = M\F is open.

(ii) If BΕHxL Ý F ¹ Æ for every ¶ > 0, then x Î F. 

(iii) If a sequence 8xn<
n=1
¥ Ì F converges to some point x Î M , then x Î F.

Proof:

(i)�(ii): This is clear from our observations above and the definition of an open set. 

(ii)�(iii): Suppose that 8xn<
n=1
¥ Ì F and xn Ì

d

x Î M  . Then BΕHxL contains infinitely 

many xn for any ¶ > 0, and hence BΕHxL Ý F ¹ Æ for any ¶ > 0. Thus, x Î F by (ii).

(iii)�(ii): If BΕHxL Ý F ¹ Æ for all ¶ > 0, then for each n there is an xn Î B1�nHxL Ý F. The 

sequence 8xn<
n=1
¥  satisfies 8xn<

n=1
¥ Ì F and xn Ì x. Hence, x Î F by (iii).      à

Note: Most authors take (iii) as the definition of a closed set . In other words, condition 

(iii) says that a closed set must contain all of its limit points. That is, “closed” means 

closed under the operation of taking of limits.

Now, as we’ve seen, some sets are neither open nor closed. However, it is possible to 

describe the “open part” of a set and the “closure” of a set. Here’s what we’ll do: 

Definition: Given a set A in HM , dL, we define the interior of A, written intHAL or Ao, to 

be the largest open set contained in A. 

That is,

          

Note that Ao is clearly an open subset of A. 

We next define the closure of A, written clHAL or A , to be the smallest closed set contain-

ing A. That is, 

    clHAL = A = Ý8F : F is closed and A Ì F< .

Please take note of the “dual” nature of our two new definitions. Now it is clear that A is 

a closed set containing A (and necessarily the smallest one). But it’s not so clear which 

points are in A or, more precisely, which points are in A\A. 

We could use a description of A that is a little easier to “test” on a given set A. It follows 

from our last theorem that x Î A iff  BΕHxL Ý A ¹ Æ for every ¶ > 0. The description that 

we are looking for simply removes this last reference to A.

• Proposition:

x Î A iff BΕHxL Ý A ¹ Æ for every ¶ > 0. 

Proof:

(Ü)

If BΕHxL Ý A ¹ Æ for every ¶ > 0, then BΕHxL Ý A ¹ Æ for every ¶ > 0 (since A Ì A), and 

hence x Î A (since closed sets contain their limit points) . 

(Þ)

Now let x Î A and let ¶ > 0. If BΕHxL Ý A = Æ, then A is a subset of HBΕHxLLc, a closed set. 

Thus, A Ì BΕHHxLLc. (Why?) But this is a contradiction, because x Î A while x Ï HBΕHxLLc.(Þ

Ü) à

• Corollary:

x Î A iff there is a sequence 8xn<
n=1
¥ Ì A with xn Ì x.

That is, A is the set of all limits of convergent sequences in A (including limits of con-

stant sequences).

Example:

In HR,   × ¤L:

a)  intHH0, 1DL = H0, 1L       and      clHH0, 1DL = @0, 1D

b)  intJ: 1

n
>

n=1

¥

N = Æ          and      clJ: 1

n
>

n=1

¥

N = : 1

n
>

n=1

¥

Ü 80<

c)  intHQL = Æ                   and      clHQL = R Ù

8     Open and Closed Sets.nb



Before  we start our discussion of open and closed sets, let’s review some facts about 

sequences and subsequences and about equivalent metrics.

                 SUBSEQUENCES

Definition:  Given a sequence 8xn<
n=1
¥ , consider a sequence 8nk<

k=1
¥  of positive integers, 

such that n1 < n2 < n3 < ... . Then the sequence 9xn
k
=
k=1

¥
 is called a subsequence of xn.

Example:

Let M = ;Î, Ì, Ï?. Suppose 8xn<
n=1
¥ Ì M  is defined by

      xn =

Ì if n = 3 p

Î if n = 3 p + 1

Ï if n = 3 p + 2

Let 8nk<
k=1
¥  be given by nk = 3 k. What is 9xn

k
=
k=1

¥
?

Solution:

Notice that n1 = 3, n2 = 6, n3 = 9, etc.

So xn1
= x3 = Ì ,  xn2

= x6 = Ì,  and  xn3
= x9 = Ì,  etc.

Thus, 9xn
k
=
k=1

¥
 is the constant sequence 9Ì=

k=1

¥
. Ù

Example: Let 8xn<
n=1
¥ = 9 1

n
=
n=1

¥
. 

a) Suppose 8nk<
k=1
¥ = 82 k + 1<

k=1
¥ . What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 8x2 k+1<

k=1
¥ = 9 1

2 k+1
=
k=1

¥
= 9 1

3
,

1

5
,

1

7
, ...= .   ª

b) Suppose 8nk<
k=1
¥ = 92k=

k=1

¥
. What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 9x

2k=
k=1

¥
= 9 1

2k
=
k=1

¥
= 9 1

2
,

1

4
,

1

8
, ...=.    ª

c) Suppose 8nk<
k=1
¥ = 82, 1, 3, 4, 5, 6, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

2
, 1,

1

3
,

1

4
, ...=. This sequence does not match the order of 8xn< and therefore 

fails to be a subsequence. Notice that n1 = 2 > 1 = n2.   ª

d) Suppose 8nk<
k=1
¥ = 84, 2, 8, 6, 12, 10, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

4
,

1

2
,

1

8
,

1

6
,

1

12
,

1

10
, ...=. This sequence does not match the order of 8xn< and 

therefore fails to be a subsequence of 8xn<. In particular 8nk<
k=1
¥  is not an increasing 

sequence of positive integers.   ª Ù

Note: Subsequences are useful tools that will later help us to describe such important 

concepts like completeness and compactness. For now however, we will have to be satis-

fied with the simple analysis of the relationship between subsequences, convergence, 

and Cauchy sequences. 

 

• Proposition:

If xn Ì
d

x, then xn
k

Ì
d

x for any subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ .

 

Proof:

We must show that for any Ε > 0, there exists K > 0 such that dIxn
k
, xM < Ε  whenever 

k ³ K.

Since xn Ì
d

x, we know that dHxn, xL < Ε  whenever n ³ N . Setting K = N , notice that 

nk ³ K. Thus, when k ³ N , we have dIxn
k
, xM < Ε . à

• Proposition:

A Cauchy sequence with a convergent subsequence converges.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is a convergent subsequence with 

xn
k

Ì
d

x. We must show that xn Ì
d

x. 

For Ε > 0, let N1 be such that dHxn, xmL <
Ε

2
 whenever n, m ³ N1. Also let N2 be such that 

dIxn
k
, xM <

Ε

2
 whenever k ³ N2. Now let N = max 8N1, N2<. 

If n, m > N , then 

              dHxn, xnmL £ dHxn, xmL <
Ε

2
      and       dHxnm, xL <

Ε

2
 .

Thus,

      dHxn, xL £ dHxn, xnm
L + dHxnm

, xL
           £ dHxn, xmL + dHxnm

, xL

           <
Ε

2
+

Ε

2
= Ε . à

 

• Proposition:

Every subsequence of a Cauchy sequence is itself a Cauchy sequence.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is any  subsequence. For Ε > 0, there is 

some N > 0 such that dHxn, xmL < Ε  whenever n, m ³ N . Notice that nn ³ n and nm ³ m. 

Thus dHxnn
, xnm

L < Ε. à

 

• Proposition:

If every subsequence of 8xn<
n=1
¥  has a further subsequence that converges to x, then 

8xn<
n=1
¥  converges to x.

 

Proof:

Suppose that 8xn<
n=1
¥  does not converge to x, but that every subsequence of 8xn<

n=1
¥  has a 

further subsequence, which converges to x.

If xn Ì
not

x (i.e. if xn does not converge to x), then infinitely many elements of the 

sequence 8xn<
n=1
¥  are further from x than some Ε > 0. That is, the set A = 8xn : dHxn, xL ³ Ε< 

is infinite if Ε is small enough. 

Notice that the elements of A form a subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ . Our assumption 

dictates that some further subsequence 9xn
kt

=
t=1

¥
 converges to x. But all the elements of 

9xn
kt

=
t=1

¥
 are elements of A.

In other words, dIxn
kt
, xM ³ Ε " t Î N, implying that xn

kt
Ì
not

x . (ÞÜ)         à

     EQUIVALENT METRICS

We have already seen that the metric at hand determines which sequences are Cauchy 

and which sequences converge. Later we will see that the convergent sequences in 

HM , dL in turn determine the open and closed sets of HM , dL and therefore the continous 

functions on HM , dL.
Given another metric function Ρ, we have generally no reason to expect the metric spaces 

HM , dL and HM , ΡL to have the same convergent sequences. In this section we would like 

to say a few words about metric functions that generate the same convergent sequences.

Definition: Two metrics d and Ρ on a set M  are said to be equivalent metrics if they 

generate the same convergent sequences: that is, dHxn, xL Ì 0  iff ΡHxn, xL Ì 0.

It might be comforting to know that most metric functions on R (or @0, ¥L) hetherto 

considered are equivalent metrics. The following proposition explains why.

• Proposition:

Let d be a metric on M  and suppose that  Ρ is defined by ΡHx, yL = f HdHx, yLL, where 

f : @0, ¥L�@0, ¥L satisfies the following three properties:

i) f HtL ³ 0 with equality iff t = 0.

ii) f ¢HtL > 0  for t Î H0, ¥L

iii) f ¢¢HtL < 0  for t Î H0, ¥L 
Then d and Ρ are equivalent. 

 

Proof:

Notice that f  is continuous and invertible. Since f ¢HtL > 0, we may state that f -1 is differ-

entiable and therefore continuous. 

Next, we need to observe that if g : U Ì R�R is continuous at 0, then for any sequence 

8tn<
n=1
¥ Ì U with tn Ì 0, we have gHtnL Ì gH0L (this will be discussed later on when we 

consider continuous functions and identify their properties).

Now suppose that 8xn<
n=1
¥ Ì M  with xn Ì

d

x. Then dHxn, xL Ì 0. Since f  is continuous, 

we see that f HdHxn, xLL Ì f H0L = 0 by setting tn = dHxn, xL. 
Thus,

 dHxn, xL Ì 0 � f HdHxn, xLL = ΡHxn, xL Ì 0.

On the other hand, if ΡHxn, xL Ì 0, then dHxn, xL = f -1HΡHxn, xLL Ì 0 because f -1 is also 

continuous at 0. We have thus established that dHxn, xL Ì 0  iff ΡHxn, xL Ì 0. Hence 

d and Ρ are equivalent.    à

Example:

The following are all equivalent metrics on R:

• dHx, yL =  x - y¤        • ΡHx, yL =  x - y¤        • ¶Hx, yL =
 x- y¤

1+ x- y¤

• ΖHx, yL = lnH x - y¤ + 1L       • jHx, yL =
lnH x- y¤+1L

1+ lnH x- y¤+1L
Ù

Note: Equivalent metrics preserve convergent sequences. Must they also have the same 

cauchy sequences? The answer is NO, as we can verify in the following example.

Example:

Let M = H0, ¥L. Then dHx, yL =  x - y¤ and ΡHx, yL = ¢ 1

x
-

1

y
¦ are equivalent metrics on M  

that do not generate the same Cauchy sequences. 

To see that d and Ρ are equivalent, observe that the function f HtL =
1

t
 is continuous on 

H0, ¥L. Notice also that f -1HtL = f HtL. That is, f  is its own inverse. 

Now, if xn Ì
d

x, then f HxnL Ì f HxL, or   f HxnL - f HxL¤ Ì 0. Hence xn Ì
d

x implies that 

¢ 1

xn

-
1

x
¦ Ì 0 or xn Ì

Ρ

x . 

On the other hand, xn Ì
Ρ

x implies that f -1HxnL Ì f -1HxL. 
That is, 

xn Ì
Ρ

x � ¡ f -1HxnL - f -1HxL¥ = ¢ 1

xn

-
1

x
¦ Ì 0 .

This in turn implies that ¢ f J 1

xn

M - f J 1

x
M¦ =  xn - x¤ Ì 0.

Thus we have shown that d and Ρ are equivalent.  ª

To see that d and Ρ fail to generate the same Cauchy sequences, notice that : 1

n
>

n=1

¥

 is a 

Cauchy sequence when it is considered under the metric dHx, yL =  x - y¤. Under the 

metric Ρ however, ΡJ 1

n
,

1

m
N =  n - m¤ ³ 1 if m ¹ n. 

Thus : 1

n
>

n=1

¥

 is not Cauchy under Ρ.   ª   Ù

Example:

Let M = R
n. 

Then d1Hx, yL = ÈÈ x - y ÈÈ1 , d2Hx, yL = ÈÈ x - y ÈÈ2 , and d¥Hx, yL = ÈÈ x - y ÈÈ¥  are all equiva-

lent metrics on Rn because

      ÈÈ x - y ÈÈ¥ £ ÈÈ x - y ÈÈ2 £ ÈÈ x - y ÈÈ1
while

 ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ¥    and   ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ2. 

We should verify that d1, d2, and d3 all generate the same Cauchy sequences 

on Rn.              Ù

The last example is very important as it allows us to make the following definition:

Definition: Given two metric spaces HM , dL and HN , ΡL, we can define a metric on the 

product M ´ N  in a variety of ways. Our only requirement is that a sequence of pairs 

Han, xnL in M ´ N  should converge precisely when both coordinate sequences 8an<
n=1
¥ and 

8xn<
n=1
¥  converge in HM , dL and HN , ΡL, respectively.

Each of the following define metrics on M ´ N  that enjoy this property. Moreover, they 

are equivalent :

• d1HHa, xL, Hb, yLL = dHa, bL + ΡHx, yL

• d2HHa, xL, Hb, yLL = IdHa, bL2 + ΡHx, yL2M1�2

• d¥HHa, xL, Hb, yLL = max 8dHa, bL, ΡHx, yL<
Henceforth, any implicit reference to “the” metric on M ´ N , sometimes called the prod-

uct metric, will mean one of d1, d2, or d¥. Any one of them will serve equally well. 

               OPEN SETS

Definition: A set U in a metric space HM , dL is called an open set if  U contains a neigh-

borhood of each of its points. In other words, U is an open set if, given x Î U, there is 

some Ε > 0 such that BΕHxL Ì U.

Example:  

a) In any metric space, the whole space M  is an open set. The empty set Æ is also open 

(by default). 

b) In R, any open interval is an open set. Indeed, given x Î Ha, bL, let Ε = min 8x - a, b - x<. 
Then Ε > 0  and Hx - Ε, x + ΕL Ì Ha, bL. The cases Ha, ¥L and H-¥, bL are similar. 

While we’re at it, notice that the interval @0, 1L, for example, is not open in R because it 

does not contain an entire neighborhood of 0.

c) In a discrete space, B1HxL = 8x< is an open set for any x. It follows that every subset of a 

discrete space is open. Ù

Before we get too carried away, we should follow the lead suggested by the last example 

and check that every open ball is in fact an open set.

• Proposition:

For any x Î M  and any Ε > 0, the open ball BΕHxL is an open set.

Proof:

Consult the drawing below to understand the motivation behind the argument of the 

proof.

                 

Let y Î BΕHxL. Then dHx, yL < Ε  and hence ∆ = Ε - dHx, yL > 0.

We will show that B∆H yL Ì BΕHxL. 
Indeed, if dH y, zL < ∆, then, by the triangle inequality

            dHx, zL £ dHx, yL + dH y, zL < dHx, yL + ∆ = dHx, yL + Ε - dHx, yL = Ε.             à

Let’s collect our thoughts. First, every open ball is open. Next, it follows from the defini-

tion of open sets that an open set must actually be a union of open balls . In fact, if  U is 

open, then U = Ü8BΕHxL : BΕHxL Ì U<. 
Moreover, any arbitrary union of open balls is again an open set. Here’s what all of this 

means:

• Theorem:

An arbitrary union of open sets is again open. That is, if 8UΑ<ΑÎA is any collection of open 

sets, then V = Ü
ΑÎA

UΑ is open.

Proof:

If x Î V , then x Î UΑ for some Α Î A. But then, since UΑ is open, BΕHxL Ì UΑ Ì V  for 

some Ε > 0. à

Intersections aren’t nearly as generous: 

• Theorem:

A finite intersection of open sets is open. That is, if each of  U1, … , Un is open, then so 

is V = U1 Ý … Ý Un . 

Proof:

If x Î V , then x Î Ui for all i = 1, … , n. Thus, for each i there is an ¶i > 0 such that 

BΕi
Ì Ui. But then, setting Ε = min 8Ε1, ..., Εn< > 0, we have BΕHxL Ì Ý

i=1

n

Ui = V .    à

Example: 

The word “finite” is crucial in the above theorem because Ý
n=1

¥

J-
1

n
,

1

n
N = 80< , and 80< is 

not open in R. Ù

Now, since the real line R is of special interest to us, let’s characterize the open subsets 

of  R . This will come in handy later. But it should be stressed that while this characteriza-

tion holds for  R, it does not have a satisfactory analogue even in R2 . (As we will see in a 

later chapter, not every open set in the plane can be written as a union of disjoint open 

disks.)

• Theorem:

If U is an open subset of R, then U may be written as a countable union of disjoint open 

intervals. That is, U = Ü
n=1

¥

In , where In = Han, bnL (these may be unbounded) and 

In Ý Im = Æ for n ¹ m.

Proof:

We know that U can be written as a union of open intervals (because each x Î U is in 

some open interval I with I Ì U). What we need to show is that U is a union of disjoint 

open intervals (such a union must be countable(to see why, check exercise 2.15 on 

Carother’s)) . 

We first claim that each x Î U is contained in a maximal open interval Ix Ì U in the 

sense that if x Î I Ì U , where I is an open interval, then we must have I Ì Ix. Indeed, 

given x Î U, let 

       ax = inf 8a : Ha, xD Ì U<     and     bx = sup 8b : @x, bM Ì U= .

Then, Ix = Hax, bxL satisfies x Î Ix Ì U, and Ix is clearly maximal. (Check this!) 

Next, notice that for any x, y Î U we have either Ix Ý Iy = Æ  or Ix = Iy. Why? Because if 

Ix Ý Iy ¹ Æ , then Ix Ü Iy is an open interval containing both Ix and Iy. By maximality we 

would then have Ix = Iy. It follows then that U is the union of disjoint (maximal) inter-

vals: U = Ü
xÎU

Ix . à

Now any time we make up a new definition in a metric space setting, it is usually very 

helpful to find an equivalent version stated exclusively in terms of sequences. To moti-

vate this in the particular case of open sets, let’s recall:

           xn Ì x � 8xn< is eventually in BΕHxL for any Ε > 0

and hence

            xn Ì x � 8xn< is eventually in U, for any open set U containing x .

This last statements essentially characterizes open sets:

• Theorem:

A set U in HM , dL is open iff, whenever a sequence 8xn<
n=1
¥  in M  converges to a point 

x Î U, we have xn Î U for all but finitely many n. 

Proof:

The forward implication is clear from the remarks preceding the theorem. Let’s see why 

the new condition implies that U is open:

If U is not open , then there is an x Î U such that BΕHxL Ý Uc ¹ Æ for all ¶ > 0. In particu-

lar , for each n there is some xn Î B1�nHxL Ý Uc. But then 8xn<
n=1
¥ Ì Uc and xn Ì x. Thus, 

the new condition also fails.(ÞÜ) à

In slightly different language, the above theorem is saying that the only way to reach a 

member of an open set is by traveling well inside the set; there are no inhabitants on the 

“frontier.” In essence, you cannot visit a single resident without seeing a whole neighbor-

hood!

  CLOSED SETS

Definition: A set F in a metric space HM , dL is said to be a closed set if its complement 

Fc = M\F is open. 

We can draw several immediate (although not terribly enlightening) conclusions:

Example:  

a) Ø  and M  are always closed. (This means that it is possible for a set to be both open 

and closed!) 

b) An arbitrary intersection of closed sets is closed. A finite union of closed sets is closed.

c) Any finite set is closed. Indeed, it is enough to show that 8x< is always closed. (Why?) 

Given any y Î M\8x< (that is, any y ¹ x), note that ¶ = dHx, yL > 0, and hence 

BΕH yL Ì M\8x<. 

d) In R, each of the intervals @a, bD, @a, ¥L, and H-¥, bD is closed. Also, N and D (the Can-

tor set, which we’ll study very soon) are closed sets. (Why?) 

e) In a discrete space, every subset is closed.

f) Sets are not “doors”! For instance, H0, 1D is neither open nor closed in R! (What??)

Ù

As yet, our definition is not terribly useful. It would be nice if we had an intrinsic charac-

terization of closed sets (something that did not depend on a knowledge of open sets), 

something in terms of sequences, for example. For this let’s first make an observation: F 

is closed iff Fc is open.

So F is closed iff

          x Î Fc � BΕHxL Ì Fc     for some Ε > 0 .

But this is the same as saying: F is closed iff

        BΕHxL Ý F ¹ Æ   for every Ε > 0 � x Î F .

        

This is our first characterization of closed sets. Intuitively speaking, closed sets are like 

blobs from a 60’s horror movie. A closed set will devour all points that reside in arbitrary 

proximity to the set.

                      

In order to better understand the nature of these “predatory” sets, let’s bring in a few 

definitions.

Definition: Let A be a subset of M . A point x Î M  is called a limit point of A if every 

neighborhood of x contains a point of A that is different from x itself, that is, if 

HBΕHxL\8x<L Ý A ¹ Æ  for any Ε > 0.

Example:  

a) Suppose you place a sugar cube, a cherry, and a queen-ant around an ant nest. Several 

moments later you take a snapshot of the event that ensues:

                

If we let A be the set of all ants in the picture, then the sugar cube, the cherry, and the 

queen-ant are all limit points of A (assuming that infinitely many ants cluster tighter and 

tighter around each object). Notice that s (sugar) and c (cherry) are not members of A, 

whereas Q Î A.

b) Let A = 8xn<
n=1
¥ Ì M  and suppose xn Ì

d

x Î M . Then x is the only limit point of A.

Note however, that a non-convergent sequence can have a huge number of limit points. 

For instance, let Q be arranged into a sequence 8rn<
n=1
¥ . Then every point of R is a limit 

point of Q. Ù

Definition: A set F is a closed set iff it contains all of its limits points.

Example:  

Let Z be the set of all zombies. Is Z a closed set?

Solution:

To answer this question, we must decide whether Z contains all of its limit points. To 

put this problem in “life or death” terms, suppose x is a limit point of Z. Then, would 

you shoot x with your sniper rifle?

               

If the concentric circles of the sniper scope never present the target in isolation, that is, 

if the heads of other zombies are always present within each target’s circle (no matter 

how small it is), then the target is a limit point of zombies. It will inevitably be “in con-

tact” with the living dead and therefore become a zombie (if it is not already a zombie). 

Therefore it appears that Z is a closed set (and that shooting the target might be the 

most humane course of action). Ù

Notice that the characterization of closed sets in terms of limit points can readily be 

translated into a sequential description. To see why, suppose x is a limit point of some 

set F. Then, by definition, BΕHxL Ý F ¹ Æ for every Ε > 0. But this means that for each 

1 � n, we can find some xn Î B1�nHxL Ý F. 

Thus, the sequence 8xn<
n=1
¥ Ì F converges to x. In other words, any limit point of F is 

necessarily a point of convergence of some sequence of elements of F.

This means that F is closed iff every sequence 8xn<
n=1
¥  that consists of elements of F and 

converges in M É F, must actually converge to an element of F.

We summarize our results in the following theorem:

• Theorem:

Given a set F in HM , dL, the following are equivalent: 

(i) F is closed; that is, Fc = M\F is open.

(ii) If BΕHxL Ý F ¹ Æ for every ¶ > 0, then x Î F. 

(iii) If a sequence 8xn<
n=1
¥ Ì F converges to some point x Î M , then x Î F.

Proof:

(i)�(ii): This is clear from our observations above and the definition of an open set. 

(ii)�(iii): Suppose that 8xn<
n=1
¥ Ì F and xn Ì

d

x Î M  . Then BΕHxL contains infinitely 

many xn for any ¶ > 0, and hence BΕHxL Ý F ¹ Æ for any ¶ > 0. Thus, x Î F by (ii).

(iii)�(ii): If BΕHxL Ý F ¹ Æ for all ¶ > 0, then for each n there is an xn Î B1�nHxL Ý F. The 

sequence 8xn<
n=1
¥  satisfies 8xn<

n=1
¥ Ì F and xn Ì x. Hence, x Î F by (iii).      à

Note: Most authors take (iii) as the definition of a closed set . In other words, condition 

(iii) says that a closed set must contain all of its limit points. That is, “closed” means 

closed under the operation of taking of limits.

Now, as we’ve seen, some sets are neither open nor closed. However, it is possible to 

describe the “open part” of a set and the “closure” of a set. Here’s what we’ll do: 

Definition: Given a set A in HM , dL, we define the interior of A, written intHAL or Ao, to 

be the largest open set contained in A. 

That is,

          

Note that Ao is clearly an open subset of A. 

We next define the closure of A, written clHAL or A , to be the smallest closed set contain-

ing A. That is, 

    clHAL = A = Ý8F : F is closed and A Ì F< .

Please take note of the “dual” nature of our two new definitions. Now it is clear that A is 

a closed set containing A (and necessarily the smallest one). But it’s not so clear which 

points are in A or, more precisely, which points are in A\A. 

We could use a description of A that is a little easier to “test” on a given set A. It follows 

from our last theorem that x Î A iff  BΕHxL Ý A ¹ Æ for every ¶ > 0. The description that 

we are looking for simply removes this last reference to A.

• Proposition:

x Î A iff BΕHxL Ý A ¹ Æ for every ¶ > 0. 

Proof:

(Ü)

If BΕHxL Ý A ¹ Æ for every ¶ > 0, then BΕHxL Ý A ¹ Æ for every ¶ > 0 (since A Ì A), and 

hence x Î A (since closed sets contain their limit points) . 

(Þ)

Now let x Î A and let ¶ > 0. If BΕHxL Ý A = Æ, then A is a subset of HBΕHxLLc, a closed set. 

Thus, A Ì BΕHHxLLc. (Why?) But this is a contradiction, because x Î A while x Ï HBΕHxLLc.(Þ

Ü) à

• Corollary:

x Î A iff there is a sequence 8xn<
n=1
¥ Ì A with xn Ì x.

That is, A is the set of all limits of convergent sequences in A (including limits of con-

stant sequences).

Example:

In HR,   × ¤L:

a)  intHH0, 1DL = H0, 1L       and      clHH0, 1DL = @0, 1D

b)  intJ: 1

n
>

n=1

¥

N = Æ          and      clJ: 1

n
>

n=1

¥

N = : 1

n
>

n=1

¥

Ü 80<

c)  intHQL = Æ                   and      clHQL = R Ù

Open and Closed Sets.nb    9



Before  we start our discussion of open and closed sets, let’s review some facts about 

sequences and subsequences and about equivalent metrics.

                 SUBSEQUENCES

Definition:  Given a sequence 8xn<
n=1
¥ , consider a sequence 8nk<

k=1
¥  of positive integers, 

such that n1 < n2 < n3 < ... . Then the sequence 9xn
k
=
k=1

¥
 is called a subsequence of xn.

Example:

Let M = ;Î, Ì, Ï?. Suppose 8xn<
n=1
¥ Ì M  is defined by

      xn =

Ì if n = 3 p

Î if n = 3 p + 1

Ï if n = 3 p + 2

Let 8nk<
k=1
¥  be given by nk = 3 k. What is 9xn

k
=
k=1

¥
?

Solution:

Notice that n1 = 3, n2 = 6, n3 = 9, etc.

So xn1
= x3 = Ì ,  xn2

= x6 = Ì,  and  xn3
= x9 = Ì,  etc.

Thus, 9xn
k
=
k=1

¥
 is the constant sequence 9Ì=

k=1

¥
. Ù

Example: Let 8xn<
n=1
¥ = 9 1

n
=
n=1

¥
. 

a) Suppose 8nk<
k=1
¥ = 82 k + 1<

k=1
¥ . What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 8x2 k+1<

k=1
¥ = 9 1

2 k+1
=
k=1

¥
= 9 1

3
,

1

5
,

1

7
, ...= .   ª

b) Suppose 8nk<
k=1
¥ = 92k=

k=1

¥
. What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 9x

2k=
k=1

¥
= 9 1

2k
=
k=1

¥
= 9 1

2
,

1

4
,

1

8
, ...=.    ª

c) Suppose 8nk<
k=1
¥ = 82, 1, 3, 4, 5, 6, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

2
, 1,

1

3
,

1

4
, ...=. This sequence does not match the order of 8xn< and therefore 

fails to be a subsequence. Notice that n1 = 2 > 1 = n2.   ª

d) Suppose 8nk<
k=1
¥ = 84, 2, 8, 6, 12, 10, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

4
,

1

2
,

1

8
,

1

6
,

1

12
,

1

10
, ...=. This sequence does not match the order of 8xn< and 

therefore fails to be a subsequence of 8xn<. In particular 8nk<
k=1
¥  is not an increasing 

sequence of positive integers.   ª Ù

Note: Subsequences are useful tools that will later help us to describe such important 

concepts like completeness and compactness. For now however, we will have to be satis-

fied with the simple analysis of the relationship between subsequences, convergence, 

and Cauchy sequences. 

 

• Proposition:

If xn Ì
d

x, then xn
k

Ì
d

x for any subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ .

 

Proof:

We must show that for any Ε > 0, there exists K > 0 such that dIxn
k
, xM < Ε  whenever 

k ³ K.

Since xn Ì
d

x, we know that dHxn, xL < Ε  whenever n ³ N . Setting K = N , notice that 

nk ³ K. Thus, when k ³ N , we have dIxn
k
, xM < Ε . à

• Proposition:

A Cauchy sequence with a convergent subsequence converges.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is a convergent subsequence with 

xn
k

Ì
d

x. We must show that xn Ì
d

x. 

For Ε > 0, let N1 be such that dHxn, xmL <
Ε

2
 whenever n, m ³ N1. Also let N2 be such that 

dIxn
k
, xM <

Ε

2
 whenever k ³ N2. Now let N = max 8N1, N2<. 

If n, m > N , then 

              dHxn, xnmL £ dHxn, xmL <
Ε

2
      and       dHxnm, xL <

Ε

2
 .

Thus,

      dHxn, xL £ dHxn, xnm
L + dHxnm

, xL
           £ dHxn, xmL + dHxnm

, xL

           <
Ε

2
+

Ε

2
= Ε . à

 

• Proposition:

Every subsequence of a Cauchy sequence is itself a Cauchy sequence.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is any  subsequence. For Ε > 0, there is 

some N > 0 such that dHxn, xmL < Ε  whenever n, m ³ N . Notice that nn ³ n and nm ³ m. 

Thus dHxnn
, xnm

L < Ε. à

 

• Proposition:

If every subsequence of 8xn<
n=1
¥  has a further subsequence that converges to x, then 

8xn<
n=1
¥  converges to x.

 

Proof:

Suppose that 8xn<
n=1
¥  does not converge to x, but that every subsequence of 8xn<

n=1
¥  has a 

further subsequence, which converges to x.

If xn Ì
not

x (i.e. if xn does not converge to x), then infinitely many elements of the 

sequence 8xn<
n=1
¥  are further from x than some Ε > 0. That is, the set A = 8xn : dHxn, xL ³ Ε< 

is infinite if Ε is small enough. 

Notice that the elements of A form a subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ . Our assumption 

dictates that some further subsequence 9xn
kt

=
t=1

¥
 converges to x. But all the elements of 

9xn
kt

=
t=1

¥
 are elements of A.

In other words, dIxn
kt
, xM ³ Ε " t Î N, implying that xn

kt
Ì
not

x . (ÞÜ)         à

     EQUIVALENT METRICS

We have already seen that the metric at hand determines which sequences are Cauchy 

and which sequences converge. Later we will see that the convergent sequences in 

HM , dL in turn determine the open and closed sets of HM , dL and therefore the continous 

functions on HM , dL.
Given another metric function Ρ, we have generally no reason to expect the metric spaces 

HM , dL and HM , ΡL to have the same convergent sequences. In this section we would like 

to say a few words about metric functions that generate the same convergent sequences.

Definition: Two metrics d and Ρ on a set M  are said to be equivalent metrics if they 

generate the same convergent sequences: that is, dHxn, xL Ì 0  iff ΡHxn, xL Ì 0.

It might be comforting to know that most metric functions on R (or @0, ¥L) hetherto 

considered are equivalent metrics. The following proposition explains why.

• Proposition:

Let d be a metric on M  and suppose that  Ρ is defined by ΡHx, yL = f HdHx, yLL, where 

f : @0, ¥L�@0, ¥L satisfies the following three properties:

i) f HtL ³ 0 with equality iff t = 0.

ii) f ¢HtL > 0  for t Î H0, ¥L

iii) f ¢¢HtL < 0  for t Î H0, ¥L 
Then d and Ρ are equivalent. 

 

Proof:

Notice that f  is continuous and invertible. Since f ¢HtL > 0, we may state that f -1 is differ-

entiable and therefore continuous. 

Next, we need to observe that if g : U Ì R�R is continuous at 0, then for any sequence 

8tn<
n=1
¥ Ì U with tn Ì 0, we have gHtnL Ì gH0L (this will be discussed later on when we 

consider continuous functions and identify their properties).

Now suppose that 8xn<
n=1
¥ Ì M  with xn Ì

d

x. Then dHxn, xL Ì 0. Since f  is continuous, 

we see that f HdHxn, xLL Ì f H0L = 0 by setting tn = dHxn, xL. 
Thus,

 dHxn, xL Ì 0 � f HdHxn, xLL = ΡHxn, xL Ì 0.

On the other hand, if ΡHxn, xL Ì 0, then dHxn, xL = f -1HΡHxn, xLL Ì 0 because f -1 is also 

continuous at 0. We have thus established that dHxn, xL Ì 0  iff ΡHxn, xL Ì 0. Hence 

d and Ρ are equivalent.    à

Example:

The following are all equivalent metrics on R:

• dHx, yL =  x - y¤        • ΡHx, yL =  x - y¤        • ¶Hx, yL =
 x- y¤

1+ x- y¤

• ΖHx, yL = lnH x - y¤ + 1L       • jHx, yL =
lnH x- y¤+1L

1+ lnH x- y¤+1L
Ù

Note: Equivalent metrics preserve convergent sequences. Must they also have the same 

cauchy sequences? The answer is NO, as we can verify in the following example.

Example:

Let M = H0, ¥L. Then dHx, yL =  x - y¤ and ΡHx, yL = ¢ 1

x
-

1

y
¦ are equivalent metrics on M  

that do not generate the same Cauchy sequences. 

To see that d and Ρ are equivalent, observe that the function f HtL =
1

t
 is continuous on 

H0, ¥L. Notice also that f -1HtL = f HtL. That is, f  is its own inverse. 

Now, if xn Ì
d

x, then f HxnL Ì f HxL, or   f HxnL - f HxL¤ Ì 0. Hence xn Ì
d

x implies that 

¢ 1

xn

-
1

x
¦ Ì 0 or xn Ì

Ρ

x . 

On the other hand, xn Ì
Ρ

x implies that f -1HxnL Ì f -1HxL. 
That is, 

xn Ì
Ρ

x � ¡ f -1HxnL - f -1HxL¥ = ¢ 1

xn

-
1

x
¦ Ì 0 .

This in turn implies that ¢ f J 1

xn

M - f J 1

x
M¦ =  xn - x¤ Ì 0.

Thus we have shown that d and Ρ are equivalent.  ª

To see that d and Ρ fail to generate the same Cauchy sequences, notice that : 1

n
>

n=1

¥

 is a 

Cauchy sequence when it is considered under the metric dHx, yL =  x - y¤. Under the 

metric Ρ however, ΡJ 1

n
,

1

m
N =  n - m¤ ³ 1 if m ¹ n. 

Thus : 1

n
>

n=1

¥

 is not Cauchy under Ρ.   ª   Ù

Example:

Let M = R
n. 

Then d1Hx, yL = ÈÈ x - y ÈÈ1 , d2Hx, yL = ÈÈ x - y ÈÈ2 , and d¥Hx, yL = ÈÈ x - y ÈÈ¥  are all equiva-

lent metrics on Rn because

      ÈÈ x - y ÈÈ¥ £ ÈÈ x - y ÈÈ2 £ ÈÈ x - y ÈÈ1
while

 ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ¥    and   ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ2. 

We should verify that d1, d2, and d3 all generate the same Cauchy sequences 

on Rn.              Ù

The last example is very important as it allows us to make the following definition:

Definition: Given two metric spaces HM , dL and HN , ΡL, we can define a metric on the 

product M ´ N  in a variety of ways. Our only requirement is that a sequence of pairs 

Han, xnL in M ´ N  should converge precisely when both coordinate sequences 8an<
n=1
¥ and 

8xn<
n=1
¥  converge in HM , dL and HN , ΡL, respectively.

Each of the following define metrics on M ´ N  that enjoy this property. Moreover, they 

are equivalent :

• d1HHa, xL, Hb, yLL = dHa, bL + ΡHx, yL

• d2HHa, xL, Hb, yLL = IdHa, bL2 + ΡHx, yL2M1�2

• d¥HHa, xL, Hb, yLL = max 8dHa, bL, ΡHx, yL<
Henceforth, any implicit reference to “the” metric on M ´ N , sometimes called the prod-

uct metric, will mean one of d1, d2, or d¥. Any one of them will serve equally well. 

               OPEN SETS

Definition: A set U in a metric space HM , dL is called an open set if  U contains a neigh-

borhood of each of its points. In other words, U is an open set if, given x Î U, there is 

some Ε > 0 such that BΕHxL Ì U.

Example:  

a) In any metric space, the whole space M  is an open set. The empty set Æ is also open 

(by default). 

b) In R, any open interval is an open set. Indeed, given x Î Ha, bL, let Ε = min 8x - a, b - x<. 
Then Ε > 0  and Hx - Ε, x + ΕL Ì Ha, bL. The cases Ha, ¥L and H-¥, bL are similar. 

While we’re at it, notice that the interval @0, 1L, for example, is not open in R because it 

does not contain an entire neighborhood of 0.

c) In a discrete space, B1HxL = 8x< is an open set for any x. It follows that every subset of a 

discrete space is open. Ù

Before we get too carried away, we should follow the lead suggested by the last example 

and check that every open ball is in fact an open set.

• Proposition:

For any x Î M  and any Ε > 0, the open ball BΕHxL is an open set.

Proof:

Consult the drawing below to understand the motivation behind the argument of the 

proof.

                 

Let y Î BΕHxL. Then dHx, yL < Ε  and hence ∆ = Ε - dHx, yL > 0.

We will show that B∆H yL Ì BΕHxL. 
Indeed, if dH y, zL < ∆, then, by the triangle inequality

            dHx, zL £ dHx, yL + dH y, zL < dHx, yL + ∆ = dHx, yL + Ε - dHx, yL = Ε.             à

Let’s collect our thoughts. First, every open ball is open. Next, it follows from the defini-

tion of open sets that an open set must actually be a union of open balls . In fact, if  U is 

open, then U = Ü8BΕHxL : BΕHxL Ì U<. 
Moreover, any arbitrary union of open balls is again an open set. Here’s what all of this 

means:

• Theorem:

An arbitrary union of open sets is again open. That is, if 8UΑ<ΑÎA is any collection of open 

sets, then V = Ü
ΑÎA

UΑ is open.

Proof:

If x Î V , then x Î UΑ for some Α Î A. But then, since UΑ is open, BΕHxL Ì UΑ Ì V  for 

some Ε > 0. à

Intersections aren’t nearly as generous: 

• Theorem:

A finite intersection of open sets is open. That is, if each of  U1, … , Un is open, then so 

is V = U1 Ý … Ý Un . 

Proof:

If x Î V , then x Î Ui for all i = 1, … , n. Thus, for each i there is an ¶i > 0 such that 

BΕi
Ì Ui. But then, setting Ε = min 8Ε1, ..., Εn< > 0, we have BΕHxL Ì Ý

i=1

n

Ui = V .    à

Example: 

The word “finite” is crucial in the above theorem because Ý
n=1

¥

J-
1

n
,

1

n
N = 80< , and 80< is 

not open in R. Ù

Now, since the real line R is of special interest to us, let’s characterize the open subsets 

of  R . This will come in handy later. But it should be stressed that while this characteriza-

tion holds for  R, it does not have a satisfactory analogue even in R2 . (As we will see in a 

later chapter, not every open set in the plane can be written as a union of disjoint open 

disks.)

• Theorem:

If U is an open subset of R, then U may be written as a countable union of disjoint open 

intervals. That is, U = Ü
n=1

¥

In , where In = Han, bnL (these may be unbounded) and 

In Ý Im = Æ for n ¹ m.

Proof:

We know that U can be written as a union of open intervals (because each x Î U is in 

some open interval I with I Ì U). What we need to show is that U is a union of disjoint 

open intervals (such a union must be countable(to see why, check exercise 2.15 on 

Carother’s)) . 

We first claim that each x Î U is contained in a maximal open interval Ix Ì U in the 

sense that if x Î I Ì U , where I is an open interval, then we must have I Ì Ix. Indeed, 

given x Î U, let 

       ax = inf 8a : Ha, xD Ì U<     and     bx = sup 8b : @x, bM Ì U= .

Then, Ix = Hax, bxL satisfies x Î Ix Ì U, and Ix is clearly maximal. (Check this!) 

Next, notice that for any x, y Î U we have either Ix Ý Iy = Æ  or Ix = Iy. Why? Because if 

Ix Ý Iy ¹ Æ , then Ix Ü Iy is an open interval containing both Ix and Iy. By maximality we 

would then have Ix = Iy. It follows then that U is the union of disjoint (maximal) inter-

vals: U = Ü
xÎU

Ix . à

Now any time we make up a new definition in a metric space setting, it is usually very 

helpful to find an equivalent version stated exclusively in terms of sequences. To moti-

vate this in the particular case of open sets, let’s recall:

           xn Ì x � 8xn< is eventually in BΕHxL for any Ε > 0

and hence

            xn Ì x � 8xn< is eventually in U, for any open set U containing x .

This last statements essentially characterizes open sets:

• Theorem:

A set U in HM , dL is open iff, whenever a sequence 8xn<
n=1
¥  in M  converges to a point 

x Î U, we have xn Î U for all but finitely many n. 

Proof:

The forward implication is clear from the remarks preceding the theorem. Let’s see why 

the new condition implies that U is open:

If U is not open , then there is an x Î U such that BΕHxL Ý Uc ¹ Æ for all ¶ > 0. In particu-

lar , for each n there is some xn Î B1�nHxL Ý Uc. But then 8xn<
n=1
¥ Ì Uc and xn Ì x. Thus, 

the new condition also fails.(ÞÜ) à

In slightly different language, the above theorem is saying that the only way to reach a 

member of an open set is by traveling well inside the set; there are no inhabitants on the 

“frontier.” In essence, you cannot visit a single resident without seeing a whole neighbor-

hood!

  CLOSED SETS

Definition: A set F in a metric space HM , dL is said to be a closed set if its complement 

Fc = M\F is open. 

We can draw several immediate (although not terribly enlightening) conclusions:

Example:  

a) Ø  and M  are always closed. (This means that it is possible for a set to be both open 

and closed!) 

b) An arbitrary intersection of closed sets is closed. A finite union of closed sets is closed.

c) Any finite set is closed. Indeed, it is enough to show that 8x< is always closed. (Why?) 

Given any y Î M\8x< (that is, any y ¹ x), note that ¶ = dHx, yL > 0, and hence 

BΕH yL Ì M\8x<. 

d) In R, each of the intervals @a, bD, @a, ¥L, and H-¥, bD is closed. Also, N and D (the Can-

tor set, which we’ll study very soon) are closed sets. (Why?) 

e) In a discrete space, every subset is closed.

f) Sets are not “doors”! For instance, H0, 1D is neither open nor closed in R! (What??)

Ù

As yet, our definition is not terribly useful. It would be nice if we had an intrinsic charac-

terization of closed sets (something that did not depend on a knowledge of open sets), 

something in terms of sequences, for example. For this let’s first make an observation: F 

is closed iff Fc is open.

So F is closed iff

          x Î Fc � BΕHxL Ì Fc     for some Ε > 0 .

But this is the same as saying: F is closed iff

        BΕHxL Ý F ¹ Æ   for every Ε > 0 � x Î F .

        

This is our first characterization of closed sets. Intuitively speaking, closed sets are like 

blobs from a 60’s horror movie. A closed set will devour all points that reside in arbitrary 

proximity to the set.

                      

In order to better understand the nature of these “predatory” sets, let’s bring in a few 

definitions.

Definition: Let A be a subset of M . A point x Î M  is called a limit point of A if every 

neighborhood of x contains a point of A that is different from x itself, that is, if 

HBΕHxL\8x<L Ý A ¹ Æ  for any Ε > 0.

Example:  

a) Suppose you place a sugar cube, a cherry, and a queen-ant around an ant nest. Several 

moments later you take a snapshot of the event that ensues:

                

If we let A be the set of all ants in the picture, then the sugar cube, the cherry, and the 

queen-ant are all limit points of A (assuming that infinitely many ants cluster tighter and 

tighter around each object). Notice that s (sugar) and c (cherry) are not members of A, 

whereas Q Î A.

b) Let A = 8xn<
n=1
¥ Ì M  and suppose xn Ì

d

x Î M . Then x is the only limit point of A.

Note however, that a non-convergent sequence can have a huge number of limit points. 

For instance, let Q be arranged into a sequence 8rn<
n=1
¥ . Then every point of R is a limit 

point of Q. Ù

Definition: A set F is a closed set iff it contains all of its limits points.

Example:  

Let Z be the set of all zombies. Is Z a closed set?

Solution:

To answer this question, we must decide whether Z contains all of its limit points. To 

put this problem in “life or death” terms, suppose x is a limit point of Z. Then, would 

you shoot x with your sniper rifle?

               

If the concentric circles of the sniper scope never present the target in isolation, that is, 

if the heads of other zombies are always present within each target’s circle (no matter 

how small it is), then the target is a limit point of zombies. It will inevitably be “in con-

tact” with the living dead and therefore become a zombie (if it is not already a zombie). 

Therefore it appears that Z is a closed set (and that shooting the target might be the 

most humane course of action). Ù

Notice that the characterization of closed sets in terms of limit points can readily be 

translated into a sequential description. To see why, suppose x is a limit point of some 

set F. Then, by definition, BΕHxL Ý F ¹ Æ for every Ε > 0. But this means that for each 

1 � n, we can find some xn Î B1�nHxL Ý F. 

Thus, the sequence 8xn<
n=1
¥ Ì F converges to x. In other words, any limit point of F is 

necessarily a point of convergence of some sequence of elements of F.

This means that F is closed iff every sequence 8xn<
n=1
¥  that consists of elements of F and 

converges in M É F, must actually converge to an element of F.

We summarize our results in the following theorem:

• Theorem:

Given a set F in HM , dL, the following are equivalent: 

(i) F is closed; that is, Fc = M\F is open.

(ii) If BΕHxL Ý F ¹ Æ for every ¶ > 0, then x Î F. 

(iii) If a sequence 8xn<
n=1
¥ Ì F converges to some point x Î M , then x Î F.

Proof:

(i)�(ii): This is clear from our observations above and the definition of an open set. 

(ii)�(iii): Suppose that 8xn<
n=1
¥ Ì F and xn Ì

d

x Î M  . Then BΕHxL contains infinitely 

many xn for any ¶ > 0, and hence BΕHxL Ý F ¹ Æ for any ¶ > 0. Thus, x Î F by (ii).

(iii)�(ii): If BΕHxL Ý F ¹ Æ for all ¶ > 0, then for each n there is an xn Î B1�nHxL Ý F. The 

sequence 8xn<
n=1
¥  satisfies 8xn<

n=1
¥ Ì F and xn Ì x. Hence, x Î F by (iii).      à

Note: Most authors take (iii) as the definition of a closed set . In other words, condition 

(iii) says that a closed set must contain all of its limit points. That is, “closed” means 

closed under the operation of taking of limits.

Now, as we’ve seen, some sets are neither open nor closed. However, it is possible to 

describe the “open part” of a set and the “closure” of a set. Here’s what we’ll do: 

Definition: Given a set A in HM , dL, we define the interior of A, written intHAL or Ao, to 

be the largest open set contained in A. 

That is,

          

Note that Ao is clearly an open subset of A. 

We next define the closure of A, written clHAL or A , to be the smallest closed set contain-

ing A. That is, 

    clHAL = A = Ý8F : F is closed and A Ì F< .

Please take note of the “dual” nature of our two new definitions. Now it is clear that A is 

a closed set containing A (and necessarily the smallest one). But it’s not so clear which 

points are in A or, more precisely, which points are in A\A. 

We could use a description of A that is a little easier to “test” on a given set A. It follows 

from our last theorem that x Î A iff  BΕHxL Ý A ¹ Æ for every ¶ > 0. The description that 

we are looking for simply removes this last reference to A.

• Proposition:

x Î A iff BΕHxL Ý A ¹ Æ for every ¶ > 0. 

Proof:

(Ü)

If BΕHxL Ý A ¹ Æ for every ¶ > 0, then BΕHxL Ý A ¹ Æ for every ¶ > 0 (since A Ì A), and 

hence x Î A (since closed sets contain their limit points) . 

(Þ)

Now let x Î A and let ¶ > 0. If BΕHxL Ý A = Æ, then A is a subset of HBΕHxLLc, a closed set. 

Thus, A Ì BΕHHxLLc. (Why?) But this is a contradiction, because x Î A while x Ï HBΕHxLLc.(Þ

Ü) à

• Corollary:

x Î A iff there is a sequence 8xn<
n=1
¥ Ì A with xn Ì x.

That is, A is the set of all limits of convergent sequences in A (including limits of con-

stant sequences).

Example:

In HR,   × ¤L:

a)  intHH0, 1DL = H0, 1L       and      clHH0, 1DL = @0, 1D

b)  intJ: 1

n
>

n=1

¥

N = Æ          and      clJ: 1

n
>

n=1

¥

N = : 1

n
>

n=1

¥

Ü 80<

c)  intHQL = Æ                   and      clHQL = R Ù

10     Open and Closed Sets.nb



Before  we start our discussion of open and closed sets, let’s review some facts about 

sequences and subsequences and about equivalent metrics.

                 SUBSEQUENCES

Definition:  Given a sequence 8xn<
n=1
¥ , consider a sequence 8nk<

k=1
¥  of positive integers, 

such that n1 < n2 < n3 < ... . Then the sequence 9xn
k
=
k=1

¥
 is called a subsequence of xn.

Example:

Let M = ;Î, Ì, Ï?. Suppose 8xn<
n=1
¥ Ì M  is defined by

      xn =

Ì if n = 3 p

Î if n = 3 p + 1

Ï if n = 3 p + 2

Let 8nk<
k=1
¥  be given by nk = 3 k. What is 9xn

k
=
k=1

¥
?

Solution:

Notice that n1 = 3, n2 = 6, n3 = 9, etc.

So xn1
= x3 = Ì ,  xn2

= x6 = Ì,  and  xn3
= x9 = Ì,  etc.

Thus, 9xn
k
=
k=1

¥
 is the constant sequence 9Ì=

k=1

¥
. Ù

Example: Let 8xn<
n=1
¥ = 9 1

n
=
n=1

¥
. 

a) Suppose 8nk<
k=1
¥ = 82 k + 1<

k=1
¥ . What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 8x2 k+1<

k=1
¥ = 9 1

2 k+1
=
k=1

¥
= 9 1

3
,

1

5
,

1

7
, ...= .   ª

b) Suppose 8nk<
k=1
¥ = 92k=

k=1

¥
. What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 9x

2k=
k=1

¥
= 9 1

2k
=
k=1

¥
= 9 1

2
,

1

4
,

1

8
, ...=.    ª

c) Suppose 8nk<
k=1
¥ = 82, 1, 3, 4, 5, 6, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

2
, 1,

1

3
,

1

4
, ...=. This sequence does not match the order of 8xn< and therefore 

fails to be a subsequence. Notice that n1 = 2 > 1 = n2.   ª

d) Suppose 8nk<
k=1
¥ = 84, 2, 8, 6, 12, 10, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

4
,

1

2
,

1

8
,

1

6
,

1

12
,

1

10
, ...=. This sequence does not match the order of 8xn< and 

therefore fails to be a subsequence of 8xn<. In particular 8nk<
k=1
¥  is not an increasing 

sequence of positive integers.   ª Ù

Note: Subsequences are useful tools that will later help us to describe such important 

concepts like completeness and compactness. For now however, we will have to be satis-

fied with the simple analysis of the relationship between subsequences, convergence, 

and Cauchy sequences. 

 

• Proposition:

If xn Ì
d

x, then xn
k

Ì
d

x for any subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ .

 

Proof:

We must show that for any Ε > 0, there exists K > 0 such that dIxn
k
, xM < Ε  whenever 

k ³ K.

Since xn Ì
d

x, we know that dHxn, xL < Ε  whenever n ³ N . Setting K = N , notice that 

nk ³ K. Thus, when k ³ N , we have dIxn
k
, xM < Ε . à

• Proposition:

A Cauchy sequence with a convergent subsequence converges.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is a convergent subsequence with 

xn
k

Ì
d

x. We must show that xn Ì
d

x. 

For Ε > 0, let N1 be such that dHxn, xmL <
Ε

2
 whenever n, m ³ N1. Also let N2 be such that 

dIxn
k
, xM <

Ε

2
 whenever k ³ N2. Now let N = max 8N1, N2<. 

If n, m > N , then 

              dHxn, xnmL £ dHxn, xmL <
Ε

2
      and       dHxnm, xL <

Ε

2
 .

Thus,

      dHxn, xL £ dHxn, xnm
L + dHxnm

, xL
           £ dHxn, xmL + dHxnm

, xL

           <
Ε

2
+

Ε

2
= Ε . à

 

• Proposition:

Every subsequence of a Cauchy sequence is itself a Cauchy sequence.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is any  subsequence. For Ε > 0, there is 

some N > 0 such that dHxn, xmL < Ε  whenever n, m ³ N . Notice that nn ³ n and nm ³ m. 

Thus dHxnn
, xnm

L < Ε. à

 

• Proposition:

If every subsequence of 8xn<
n=1
¥  has a further subsequence that converges to x, then 

8xn<
n=1
¥  converges to x.

 

Proof:

Suppose that 8xn<
n=1
¥  does not converge to x, but that every subsequence of 8xn<

n=1
¥  has a 

further subsequence, which converges to x.

If xn Ì
not

x (i.e. if xn does not converge to x), then infinitely many elements of the 

sequence 8xn<
n=1
¥  are further from x than some Ε > 0. That is, the set A = 8xn : dHxn, xL ³ Ε< 

is infinite if Ε is small enough. 

Notice that the elements of A form a subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ . Our assumption 

dictates that some further subsequence 9xn
kt

=
t=1

¥
 converges to x. But all the elements of 

9xn
kt

=
t=1

¥
 are elements of A.

In other words, dIxn
kt
, xM ³ Ε " t Î N, implying that xn

kt
Ì
not

x . (ÞÜ)         à

     EQUIVALENT METRICS

We have already seen that the metric at hand determines which sequences are Cauchy 

and which sequences converge. Later we will see that the convergent sequences in 

HM , dL in turn determine the open and closed sets of HM , dL and therefore the continous 

functions on HM , dL.
Given another metric function Ρ, we have generally no reason to expect the metric spaces 

HM , dL and HM , ΡL to have the same convergent sequences. In this section we would like 

to say a few words about metric functions that generate the same convergent sequences.

Definition: Two metrics d and Ρ on a set M  are said to be equivalent metrics if they 

generate the same convergent sequences: that is, dHxn, xL Ì 0  iff ΡHxn, xL Ì 0.

It might be comforting to know that most metric functions on R (or @0, ¥L) hetherto 

considered are equivalent metrics. The following proposition explains why.

• Proposition:

Let d be a metric on M  and suppose that  Ρ is defined by ΡHx, yL = f HdHx, yLL, where 

f : @0, ¥L�@0, ¥L satisfies the following three properties:

i) f HtL ³ 0 with equality iff t = 0.

ii) f ¢HtL > 0  for t Î H0, ¥L

iii) f ¢¢HtL < 0  for t Î H0, ¥L 
Then d and Ρ are equivalent. 

 

Proof:

Notice that f  is continuous and invertible. Since f ¢HtL > 0, we may state that f -1 is differ-

entiable and therefore continuous. 

Next, we need to observe that if g : U Ì R�R is continuous at 0, then for any sequence 

8tn<
n=1
¥ Ì U with tn Ì 0, we have gHtnL Ì gH0L (this will be discussed later on when we 

consider continuous functions and identify their properties).

Now suppose that 8xn<
n=1
¥ Ì M  with xn Ì

d

x. Then dHxn, xL Ì 0. Since f  is continuous, 

we see that f HdHxn, xLL Ì f H0L = 0 by setting tn = dHxn, xL. 
Thus,

 dHxn, xL Ì 0 � f HdHxn, xLL = ΡHxn, xL Ì 0.

On the other hand, if ΡHxn, xL Ì 0, then dHxn, xL = f -1HΡHxn, xLL Ì 0 because f -1 is also 

continuous at 0. We have thus established that dHxn, xL Ì 0  iff ΡHxn, xL Ì 0. Hence 

d and Ρ are equivalent.    à

Example:

The following are all equivalent metrics on R:

• dHx, yL =  x - y¤        • ΡHx, yL =  x - y¤        • ¶Hx, yL =
 x- y¤

1+ x- y¤

• ΖHx, yL = lnH x - y¤ + 1L       • jHx, yL =
lnH x- y¤+1L

1+ lnH x- y¤+1L
Ù

Note: Equivalent metrics preserve convergent sequences. Must they also have the same 

cauchy sequences? The answer is NO, as we can verify in the following example.

Example:

Let M = H0, ¥L. Then dHx, yL =  x - y¤ and ΡHx, yL = ¢ 1

x
-

1

y
¦ are equivalent metrics on M  

that do not generate the same Cauchy sequences. 

To see that d and Ρ are equivalent, observe that the function f HtL =
1

t
 is continuous on 

H0, ¥L. Notice also that f -1HtL = f HtL. That is, f  is its own inverse. 

Now, if xn Ì
d

x, then f HxnL Ì f HxL, or   f HxnL - f HxL¤ Ì 0. Hence xn Ì
d

x implies that 

¢ 1

xn

-
1

x
¦ Ì 0 or xn Ì

Ρ

x . 

On the other hand, xn Ì
Ρ

x implies that f -1HxnL Ì f -1HxL. 
That is, 

xn Ì
Ρ

x � ¡ f -1HxnL - f -1HxL¥ = ¢ 1

xn

-
1

x
¦ Ì 0 .

This in turn implies that ¢ f J 1

xn

M - f J 1

x
M¦ =  xn - x¤ Ì 0.

Thus we have shown that d and Ρ are equivalent.  ª

To see that d and Ρ fail to generate the same Cauchy sequences, notice that : 1

n
>

n=1

¥

 is a 

Cauchy sequence when it is considered under the metric dHx, yL =  x - y¤. Under the 

metric Ρ however, ΡJ 1

n
,

1

m
N =  n - m¤ ³ 1 if m ¹ n. 

Thus : 1

n
>

n=1

¥

 is not Cauchy under Ρ.   ª   Ù

Example:

Let M = R
n. 

Then d1Hx, yL = ÈÈ x - y ÈÈ1 , d2Hx, yL = ÈÈ x - y ÈÈ2 , and d¥Hx, yL = ÈÈ x - y ÈÈ¥  are all equiva-

lent metrics on Rn because

      ÈÈ x - y ÈÈ¥ £ ÈÈ x - y ÈÈ2 £ ÈÈ x - y ÈÈ1
while

 ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ¥    and   ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ2. 

We should verify that d1, d2, and d3 all generate the same Cauchy sequences 

on Rn.              Ù

The last example is very important as it allows us to make the following definition:

Definition: Given two metric spaces HM , dL and HN , ΡL, we can define a metric on the 

product M ´ N  in a variety of ways. Our only requirement is that a sequence of pairs 

Han, xnL in M ´ N  should converge precisely when both coordinate sequences 8an<
n=1
¥ and 

8xn<
n=1
¥  converge in HM , dL and HN , ΡL, respectively.

Each of the following define metrics on M ´ N  that enjoy this property. Moreover, they 

are equivalent :

• d1HHa, xL, Hb, yLL = dHa, bL + ΡHx, yL

• d2HHa, xL, Hb, yLL = IdHa, bL2 + ΡHx, yL2M1�2

• d¥HHa, xL, Hb, yLL = max 8dHa, bL, ΡHx, yL<
Henceforth, any implicit reference to “the” metric on M ´ N , sometimes called the prod-

uct metric, will mean one of d1, d2, or d¥. Any one of them will serve equally well. 

               OPEN SETS

Definition: A set U in a metric space HM , dL is called an open set if  U contains a neigh-

borhood of each of its points. In other words, U is an open set if, given x Î U, there is 

some Ε > 0 such that BΕHxL Ì U.

Example:  

a) In any metric space, the whole space M  is an open set. The empty set Æ is also open 

(by default). 

b) In R, any open interval is an open set. Indeed, given x Î Ha, bL, let Ε = min 8x - a, b - x<. 
Then Ε > 0  and Hx - Ε, x + ΕL Ì Ha, bL. The cases Ha, ¥L and H-¥, bL are similar. 

While we’re at it, notice that the interval @0, 1L, for example, is not open in R because it 

does not contain an entire neighborhood of 0.

c) In a discrete space, B1HxL = 8x< is an open set for any x. It follows that every subset of a 

discrete space is open. Ù

Before we get too carried away, we should follow the lead suggested by the last example 

and check that every open ball is in fact an open set.

• Proposition:

For any x Î M  and any Ε > 0, the open ball BΕHxL is an open set.

Proof:

Consult the drawing below to understand the motivation behind the argument of the 

proof.

                 

Let y Î BΕHxL. Then dHx, yL < Ε  and hence ∆ = Ε - dHx, yL > 0.

We will show that B∆H yL Ì BΕHxL. 
Indeed, if dH y, zL < ∆, then, by the triangle inequality

            dHx, zL £ dHx, yL + dH y, zL < dHx, yL + ∆ = dHx, yL + Ε - dHx, yL = Ε.             à

Let’s collect our thoughts. First, every open ball is open. Next, it follows from the defini-

tion of open sets that an open set must actually be a union of open balls . In fact, if  U is 

open, then U = Ü8BΕHxL : BΕHxL Ì U<. 
Moreover, any arbitrary union of open balls is again an open set. Here’s what all of this 

means:

• Theorem:

An arbitrary union of open sets is again open. That is, if 8UΑ<ΑÎA is any collection of open 

sets, then V = Ü
ΑÎA

UΑ is open.

Proof:

If x Î V , then x Î UΑ for some Α Î A. But then, since UΑ is open, BΕHxL Ì UΑ Ì V  for 

some Ε > 0. à

Intersections aren’t nearly as generous: 

• Theorem:

A finite intersection of open sets is open. That is, if each of  U1, … , Un is open, then so 

is V = U1 Ý … Ý Un . 

Proof:

If x Î V , then x Î Ui for all i = 1, … , n. Thus, for each i there is an ¶i > 0 such that 

BΕi
Ì Ui. But then, setting Ε = min 8Ε1, ..., Εn< > 0, we have BΕHxL Ì Ý

i=1

n

Ui = V .    à

Example: 

The word “finite” is crucial in the above theorem because Ý
n=1

¥

J-
1

n
,

1

n
N = 80< , and 80< is 

not open in R. Ù

Now, since the real line R is of special interest to us, let’s characterize the open subsets 

of  R . This will come in handy later. But it should be stressed that while this characteriza-

tion holds for  R, it does not have a satisfactory analogue even in R2 . (As we will see in a 

later chapter, not every open set in the plane can be written as a union of disjoint open 

disks.)

• Theorem:

If U is an open subset of R, then U may be written as a countable union of disjoint open 

intervals. That is, U = Ü
n=1

¥

In , where In = Han, bnL (these may be unbounded) and 

In Ý Im = Æ for n ¹ m.

Proof:

We know that U can be written as a union of open intervals (because each x Î U is in 

some open interval I with I Ì U). What we need to show is that U is a union of disjoint 

open intervals (such a union must be countable(to see why, check exercise 2.15 on 

Carother’s)) . 

We first claim that each x Î U is contained in a maximal open interval Ix Ì U in the 

sense that if x Î I Ì U , where I is an open interval, then we must have I Ì Ix. Indeed, 

given x Î U, let 

       ax = inf 8a : Ha, xD Ì U<     and     bx = sup 8b : @x, bM Ì U= .

Then, Ix = Hax, bxL satisfies x Î Ix Ì U, and Ix is clearly maximal. (Check this!) 

Next, notice that for any x, y Î U we have either Ix Ý Iy = Æ  or Ix = Iy. Why? Because if 

Ix Ý Iy ¹ Æ , then Ix Ü Iy is an open interval containing both Ix and Iy. By maximality we 

would then have Ix = Iy. It follows then that U is the union of disjoint (maximal) inter-

vals: U = Ü
xÎU

Ix . à

Now any time we make up a new definition in a metric space setting, it is usually very 

helpful to find an equivalent version stated exclusively in terms of sequences. To moti-

vate this in the particular case of open sets, let’s recall:

           xn Ì x � 8xn< is eventually in BΕHxL for any Ε > 0

and hence

            xn Ì x � 8xn< is eventually in U, for any open set U containing x .

This last statements essentially characterizes open sets:

• Theorem:

A set U in HM , dL is open iff, whenever a sequence 8xn<
n=1
¥  in M  converges to a point 

x Î U, we have xn Î U for all but finitely many n. 

Proof:

The forward implication is clear from the remarks preceding the theorem. Let’s see why 

the new condition implies that U is open:

If U is not open , then there is an x Î U such that BΕHxL Ý Uc ¹ Æ for all ¶ > 0. In particu-

lar , for each n there is some xn Î B1�nHxL Ý Uc. But then 8xn<
n=1
¥ Ì Uc and xn Ì x. Thus, 

the new condition also fails.(ÞÜ) à

In slightly different language, the above theorem is saying that the only way to reach a 

member of an open set is by traveling well inside the set; there are no inhabitants on the 

“frontier.” In essence, you cannot visit a single resident without seeing a whole neighbor-

hood!

  CLOSED SETS

Definition: A set F in a metric space HM , dL is said to be a closed set if its complement 

Fc = M\F is open. 

We can draw several immediate (although not terribly enlightening) conclusions:

Example:  

a) Ø  and M  are always closed. (This means that it is possible for a set to be both open 

and closed!) 

b) An arbitrary intersection of closed sets is closed. A finite union of closed sets is closed.

c) Any finite set is closed. Indeed, it is enough to show that 8x< is always closed. (Why?) 

Given any y Î M\8x< (that is, any y ¹ x), note that ¶ = dHx, yL > 0, and hence 

BΕH yL Ì M\8x<. 

d) In R, each of the intervals @a, bD, @a, ¥L, and H-¥, bD is closed. Also, N and D (the Can-

tor set, which we’ll study very soon) are closed sets. (Why?) 

e) In a discrete space, every subset is closed.

f) Sets are not “doors”! For instance, H0, 1D is neither open nor closed in R! (What??)

Ù

As yet, our definition is not terribly useful. It would be nice if we had an intrinsic charac-

terization of closed sets (something that did not depend on a knowledge of open sets), 

something in terms of sequences, for example. For this let’s first make an observation: F 

is closed iff Fc is open.

So F is closed iff

          x Î Fc � BΕHxL Ì Fc     for some Ε > 0 .

But this is the same as saying: F is closed iff

        BΕHxL Ý F ¹ Æ   for every Ε > 0 � x Î F .

        

This is our first characterization of closed sets. Intuitively speaking, closed sets are like 

blobs from a 60’s horror movie. A closed set will devour all points that reside in arbitrary 

proximity to the set.

                      

In order to better understand the nature of these “predatory” sets, let’s bring in a few 

definitions.

Definition: Let A be a subset of M . A point x Î M  is called a limit point of A if every 

neighborhood of x contains a point of A that is different from x itself, that is, if 

HBΕHxL\8x<L Ý A ¹ Æ  for any Ε > 0.

Example:  

a) Suppose you place a sugar cube, a cherry, and a queen-ant around an ant nest. Several 

moments later you take a snapshot of the event that ensues:

                

If we let A be the set of all ants in the picture, then the sugar cube, the cherry, and the 

queen-ant are all limit points of A (assuming that infinitely many ants cluster tighter and 

tighter around each object). Notice that s (sugar) and c (cherry) are not members of A, 

whereas Q Î A.

b) Let A = 8xn<
n=1
¥ Ì M  and suppose xn Ì

d

x Î M . Then x is the only limit point of A.

Note however, that a non-convergent sequence can have a huge number of limit points. 

For instance, let Q be arranged into a sequence 8rn<
n=1
¥ . Then every point of R is a limit 

point of Q. Ù

Definition: A set F is a closed set iff it contains all of its limits points.

Example:  

Let Z be the set of all zombies. Is Z a closed set?

Solution:

To answer this question, we must decide whether Z contains all of its limit points. To 

put this problem in “life or death” terms, suppose x is a limit point of Z. Then, would 

you shoot x with your sniper rifle?

               

If the concentric circles of the sniper scope never present the target in isolation, that is, 

if the heads of other zombies are always present within each target’s circle (no matter 

how small it is), then the target is a limit point of zombies. It will inevitably be “in con-

tact” with the living dead and therefore become a zombie (if it is not already a zombie). 

Therefore it appears that Z is a closed set (and that shooting the target might be the 

most humane course of action). Ù

Notice that the characterization of closed sets in terms of limit points can readily be 

translated into a sequential description. To see why, suppose x is a limit point of some 

set F. Then, by definition, BΕHxL Ý F ¹ Æ for every Ε > 0. But this means that for each 

1 � n, we can find some xn Î B1�nHxL Ý F. 

Thus, the sequence 8xn<
n=1
¥ Ì F converges to x. In other words, any limit point of F is 

necessarily a point of convergence of some sequence of elements of F.

This means that F is closed iff every sequence 8xn<
n=1
¥  that consists of elements of F and 

converges in M É F, must actually converge to an element of F.

We summarize our results in the following theorem:

• Theorem:

Given a set F in HM , dL, the following are equivalent: 

(i) F is closed; that is, Fc = M\F is open.

(ii) If BΕHxL Ý F ¹ Æ for every ¶ > 0, then x Î F. 

(iii) If a sequence 8xn<
n=1
¥ Ì F converges to some point x Î M , then x Î F.

Proof:

(i)�(ii): This is clear from our observations above and the definition of an open set. 

(ii)�(iii): Suppose that 8xn<
n=1
¥ Ì F and xn Ì

d

x Î M  . Then BΕHxL contains infinitely 

many xn for any ¶ > 0, and hence BΕHxL Ý F ¹ Æ for any ¶ > 0. Thus, x Î F by (ii).

(iii)�(ii): If BΕHxL Ý F ¹ Æ for all ¶ > 0, then for each n there is an xn Î B1�nHxL Ý F. The 

sequence 8xn<
n=1
¥  satisfies 8xn<

n=1
¥ Ì F and xn Ì x. Hence, x Î F by (iii).      à

Note: Most authors take (iii) as the definition of a closed set . In other words, condition 

(iii) says that a closed set must contain all of its limit points. That is, “closed” means 

closed under the operation of taking of limits.

Now, as we’ve seen, some sets are neither open nor closed. However, it is possible to 

describe the “open part” of a set and the “closure” of a set. Here’s what we’ll do: 

Definition: Given a set A in HM , dL, we define the interior of A, written intHAL or Ao, to 

be the largest open set contained in A. 

That is,

          

Note that Ao is clearly an open subset of A. 

We next define the closure of A, written clHAL or A , to be the smallest closed set contain-

ing A. That is, 

    clHAL = A = Ý8F : F is closed and A Ì F< .

Please take note of the “dual” nature of our two new definitions. Now it is clear that A is 

a closed set containing A (and necessarily the smallest one). But it’s not so clear which 

points are in A or, more precisely, which points are in A\A. 

We could use a description of A that is a little easier to “test” on a given set A. It follows 

from our last theorem that x Î A iff  BΕHxL Ý A ¹ Æ for every ¶ > 0. The description that 

we are looking for simply removes this last reference to A.

• Proposition:

x Î A iff BΕHxL Ý A ¹ Æ for every ¶ > 0. 

Proof:

(Ü)

If BΕHxL Ý A ¹ Æ for every ¶ > 0, then BΕHxL Ý A ¹ Æ for every ¶ > 0 (since A Ì A), and 

hence x Î A (since closed sets contain their limit points) . 

(Þ)

Now let x Î A and let ¶ > 0. If BΕHxL Ý A = Æ, then A is a subset of HBΕHxLLc, a closed set. 

Thus, A Ì BΕHHxLLc. (Why?) But this is a contradiction, because x Î A while x Ï HBΕHxLLc.(Þ

Ü) à

• Corollary:

x Î A iff there is a sequence 8xn<
n=1
¥ Ì A with xn Ì x.

That is, A is the set of all limits of convergent sequences in A (including limits of con-

stant sequences).

Example:

In HR,   × ¤L:

a)  intHH0, 1DL = H0, 1L       and      clHH0, 1DL = @0, 1D

b)  intJ: 1

n
>

n=1

¥

N = Æ          and      clJ: 1

n
>

n=1

¥

N = : 1

n
>

n=1

¥

Ü 80<

c)  intHQL = Æ                   and      clHQL = R Ù
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Before  we start our discussion of open and closed sets, let’s review some facts about 

sequences and subsequences and about equivalent metrics.

                 SUBSEQUENCES

Definition:  Given a sequence 8xn<
n=1
¥ , consider a sequence 8nk<

k=1
¥  of positive integers, 

such that n1 < n2 < n3 < ... . Then the sequence 9xn
k
=
k=1

¥
 is called a subsequence of xn.

Example:

Let M = ;Î, Ì, Ï?. Suppose 8xn<
n=1
¥ Ì M  is defined by

      xn =

Ì if n = 3 p

Î if n = 3 p + 1

Ï if n = 3 p + 2

Let 8nk<
k=1
¥  be given by nk = 3 k. What is 9xn

k
=
k=1

¥
?

Solution:

Notice that n1 = 3, n2 = 6, n3 = 9, etc.

So xn1
= x3 = Ì ,  xn2

= x6 = Ì,  and  xn3
= x9 = Ì,  etc.

Thus, 9xn
k
=
k=1

¥
 is the constant sequence 9Ì=

k=1

¥
. Ù

Example: Let 8xn<
n=1
¥ = 9 1

n
=
n=1

¥
. 

a) Suppose 8nk<
k=1
¥ = 82 k + 1<

k=1
¥ . What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 8x2 k+1<

k=1
¥ = 9 1

2 k+1
=
k=1

¥
= 9 1

3
,

1

5
,

1

7
, ...= .   ª

b) Suppose 8nk<
k=1
¥ = 92k=

k=1

¥
. What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 9x

2k=
k=1

¥
= 9 1

2k
=
k=1

¥
= 9 1

2
,

1

4
,

1

8
, ...=.    ª

c) Suppose 8nk<
k=1
¥ = 82, 1, 3, 4, 5, 6, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

2
, 1,

1

3
,

1

4
, ...=. This sequence does not match the order of 8xn< and therefore 

fails to be a subsequence. Notice that n1 = 2 > 1 = n2.   ª

d) Suppose 8nk<
k=1
¥ = 84, 2, 8, 6, 12, 10, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

4
,

1

2
,

1

8
,

1

6
,

1

12
,

1

10
, ...=. This sequence does not match the order of 8xn< and 

therefore fails to be a subsequence of 8xn<. In particular 8nk<
k=1
¥  is not an increasing 

sequence of positive integers.   ª Ù

Note: Subsequences are useful tools that will later help us to describe such important 

concepts like completeness and compactness. For now however, we will have to be satis-

fied with the simple analysis of the relationship between subsequences, convergence, 

and Cauchy sequences. 

 

• Proposition:

If xn Ì
d

x, then xn
k

Ì
d

x for any subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ .

 

Proof:

We must show that for any Ε > 0, there exists K > 0 such that dIxn
k
, xM < Ε  whenever 

k ³ K.

Since xn Ì
d

x, we know that dHxn, xL < Ε  whenever n ³ N . Setting K = N , notice that 

nk ³ K. Thus, when k ³ N , we have dIxn
k
, xM < Ε . à

• Proposition:

A Cauchy sequence with a convergent subsequence converges.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is a convergent subsequence with 

xn
k

Ì
d

x. We must show that xn Ì
d

x. 

For Ε > 0, let N1 be such that dHxn, xmL <
Ε

2
 whenever n, m ³ N1. Also let N2 be such that 

dIxn
k
, xM <

Ε

2
 whenever k ³ N2. Now let N = max 8N1, N2<. 

If n, m > N , then 

              dHxn, xnmL £ dHxn, xmL <
Ε

2
      and       dHxnm, xL <

Ε

2
 .

Thus,

      dHxn, xL £ dHxn, xnm
L + dHxnm

, xL
           £ dHxn, xmL + dHxnm

, xL

           <
Ε

2
+

Ε

2
= Ε . à

 

• Proposition:

Every subsequence of a Cauchy sequence is itself a Cauchy sequence.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is any  subsequence. For Ε > 0, there is 

some N > 0 such that dHxn, xmL < Ε  whenever n, m ³ N . Notice that nn ³ n and nm ³ m. 

Thus dHxnn
, xnm

L < Ε. à

 

• Proposition:

If every subsequence of 8xn<
n=1
¥  has a further subsequence that converges to x, then 

8xn<
n=1
¥  converges to x.

 

Proof:

Suppose that 8xn<
n=1
¥  does not converge to x, but that every subsequence of 8xn<

n=1
¥  has a 

further subsequence, which converges to x.

If xn Ì
not

x (i.e. if xn does not converge to x), then infinitely many elements of the 

sequence 8xn<
n=1
¥  are further from x than some Ε > 0. That is, the set A = 8xn : dHxn, xL ³ Ε< 

is infinite if Ε is small enough. 

Notice that the elements of A form a subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ . Our assumption 

dictates that some further subsequence 9xn
kt

=
t=1

¥
 converges to x. But all the elements of 

9xn
kt

=
t=1

¥
 are elements of A.

In other words, dIxn
kt
, xM ³ Ε " t Î N, implying that xn

kt
Ì
not

x . (ÞÜ)         à

     EQUIVALENT METRICS

We have already seen that the metric at hand determines which sequences are Cauchy 

and which sequences converge. Later we will see that the convergent sequences in 

HM , dL in turn determine the open and closed sets of HM , dL and therefore the continous 

functions on HM , dL.
Given another metric function Ρ, we have generally no reason to expect the metric spaces 

HM , dL and HM , ΡL to have the same convergent sequences. In this section we would like 

to say a few words about metric functions that generate the same convergent sequences.

Definition: Two metrics d and Ρ on a set M  are said to be equivalent metrics if they 

generate the same convergent sequences: that is, dHxn, xL Ì 0  iff ΡHxn, xL Ì 0.

It might be comforting to know that most metric functions on R (or @0, ¥L) hetherto 

considered are equivalent metrics. The following proposition explains why.

• Proposition:

Let d be a metric on M  and suppose that  Ρ is defined by ΡHx, yL = f HdHx, yLL, where 

f : @0, ¥L�@0, ¥L satisfies the following three properties:

i) f HtL ³ 0 with equality iff t = 0.

ii) f ¢HtL > 0  for t Î H0, ¥L

iii) f ¢¢HtL < 0  for t Î H0, ¥L 
Then d and Ρ are equivalent. 

 

Proof:

Notice that f  is continuous and invertible. Since f ¢HtL > 0, we may state that f -1 is differ-

entiable and therefore continuous. 

Next, we need to observe that if g : U Ì R�R is continuous at 0, then for any sequence 

8tn<
n=1
¥ Ì U with tn Ì 0, we have gHtnL Ì gH0L (this will be discussed later on when we 

consider continuous functions and identify their properties).

Now suppose that 8xn<
n=1
¥ Ì M  with xn Ì

d

x. Then dHxn, xL Ì 0. Since f  is continuous, 

we see that f HdHxn, xLL Ì f H0L = 0 by setting tn = dHxn, xL. 
Thus,

 dHxn, xL Ì 0 � f HdHxn, xLL = ΡHxn, xL Ì 0.

On the other hand, if ΡHxn, xL Ì 0, then dHxn, xL = f -1HΡHxn, xLL Ì 0 because f -1 is also 

continuous at 0. We have thus established that dHxn, xL Ì 0  iff ΡHxn, xL Ì 0. Hence 

d and Ρ are equivalent.    à

Example:

The following are all equivalent metrics on R:

• dHx, yL =  x - y¤        • ΡHx, yL =  x - y¤        • ¶Hx, yL =
 x- y¤

1+ x- y¤

• ΖHx, yL = lnH x - y¤ + 1L       • jHx, yL =
lnH x- y¤+1L

1+ lnH x- y¤+1L
Ù

Note: Equivalent metrics preserve convergent sequences. Must they also have the same 

cauchy sequences? The answer is NO, as we can verify in the following example.

Example:

Let M = H0, ¥L. Then dHx, yL =  x - y¤ and ΡHx, yL = ¢ 1

x
-

1

y
¦ are equivalent metrics on M  

that do not generate the same Cauchy sequences. 

To see that d and Ρ are equivalent, observe that the function f HtL =
1

t
 is continuous on 

H0, ¥L. Notice also that f -1HtL = f HtL. That is, f  is its own inverse. 

Now, if xn Ì
d

x, then f HxnL Ì f HxL, or   f HxnL - f HxL¤ Ì 0. Hence xn Ì
d

x implies that 

¢ 1

xn

-
1

x
¦ Ì 0 or xn Ì

Ρ

x . 

On the other hand, xn Ì
Ρ

x implies that f -1HxnL Ì f -1HxL. 
That is, 

xn Ì
Ρ

x � ¡ f -1HxnL - f -1HxL¥ = ¢ 1

xn

-
1

x
¦ Ì 0 .

This in turn implies that ¢ f J 1

xn

M - f J 1

x
M¦ =  xn - x¤ Ì 0.

Thus we have shown that d and Ρ are equivalent.  ª

To see that d and Ρ fail to generate the same Cauchy sequences, notice that : 1

n
>

n=1

¥

 is a 

Cauchy sequence when it is considered under the metric dHx, yL =  x - y¤. Under the 

metric Ρ however, ΡJ 1

n
,

1

m
N =  n - m¤ ³ 1 if m ¹ n. 

Thus : 1

n
>

n=1

¥

 is not Cauchy under Ρ.   ª   Ù

Example:

Let M = R
n. 

Then d1Hx, yL = ÈÈ x - y ÈÈ1 , d2Hx, yL = ÈÈ x - y ÈÈ2 , and d¥Hx, yL = ÈÈ x - y ÈÈ¥  are all equiva-

lent metrics on Rn because

      ÈÈ x - y ÈÈ¥ £ ÈÈ x - y ÈÈ2 £ ÈÈ x - y ÈÈ1
while

 ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ¥    and   ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ2. 

We should verify that d1, d2, and d3 all generate the same Cauchy sequences 

on Rn.              Ù

The last example is very important as it allows us to make the following definition:

Definition: Given two metric spaces HM , dL and HN , ΡL, we can define a metric on the 

product M ´ N  in a variety of ways. Our only requirement is that a sequence of pairs 

Han, xnL in M ´ N  should converge precisely when both coordinate sequences 8an<
n=1
¥ and 

8xn<
n=1
¥  converge in HM , dL and HN , ΡL, respectively.

Each of the following define metrics on M ´ N  that enjoy this property. Moreover, they 

are equivalent :

• d1HHa, xL, Hb, yLL = dHa, bL + ΡHx, yL

• d2HHa, xL, Hb, yLL = IdHa, bL2 + ΡHx, yL2M1�2

• d¥HHa, xL, Hb, yLL = max 8dHa, bL, ΡHx, yL<
Henceforth, any implicit reference to “the” metric on M ´ N , sometimes called the prod-

uct metric, will mean one of d1, d2, or d¥. Any one of them will serve equally well. 

               OPEN SETS

Definition: A set U in a metric space HM , dL is called an open set if  U contains a neigh-

borhood of each of its points. In other words, U is an open set if, given x Î U, there is 

some Ε > 0 such that BΕHxL Ì U.

Example:  

a) In any metric space, the whole space M  is an open set. The empty set Æ is also open 

(by default). 

b) In R, any open interval is an open set. Indeed, given x Î Ha, bL, let Ε = min 8x - a, b - x<. 
Then Ε > 0  and Hx - Ε, x + ΕL Ì Ha, bL. The cases Ha, ¥L and H-¥, bL are similar. 

While we’re at it, notice that the interval @0, 1L, for example, is not open in R because it 

does not contain an entire neighborhood of 0.

c) In a discrete space, B1HxL = 8x< is an open set for any x. It follows that every subset of a 

discrete space is open. Ù

Before we get too carried away, we should follow the lead suggested by the last example 

and check that every open ball is in fact an open set.

• Proposition:

For any x Î M  and any Ε > 0, the open ball BΕHxL is an open set.

Proof:

Consult the drawing below to understand the motivation behind the argument of the 

proof.

                 

Let y Î BΕHxL. Then dHx, yL < Ε  and hence ∆ = Ε - dHx, yL > 0.

We will show that B∆H yL Ì BΕHxL. 
Indeed, if dH y, zL < ∆, then, by the triangle inequality

            dHx, zL £ dHx, yL + dH y, zL < dHx, yL + ∆ = dHx, yL + Ε - dHx, yL = Ε.             à

Let’s collect our thoughts. First, every open ball is open. Next, it follows from the defini-

tion of open sets that an open set must actually be a union of open balls . In fact, if  U is 

open, then U = Ü8BΕHxL : BΕHxL Ì U<. 
Moreover, any arbitrary union of open balls is again an open set. Here’s what all of this 

means:

• Theorem:

An arbitrary union of open sets is again open. That is, if 8UΑ<ΑÎA is any collection of open 

sets, then V = Ü
ΑÎA

UΑ is open.

Proof:

If x Î V , then x Î UΑ for some Α Î A. But then, since UΑ is open, BΕHxL Ì UΑ Ì V  for 

some Ε > 0. à

Intersections aren’t nearly as generous: 

• Theorem:

A finite intersection of open sets is open. That is, if each of  U1, … , Un is open, then so 

is V = U1 Ý … Ý Un . 

Proof:

If x Î V , then x Î Ui for all i = 1, … , n. Thus, for each i there is an ¶i > 0 such that 

BΕi
Ì Ui. But then, setting Ε = min 8Ε1, ..., Εn< > 0, we have BΕHxL Ì Ý

i=1

n

Ui = V .    à

Example: 

The word “finite” is crucial in the above theorem because Ý
n=1

¥

J-
1

n
,

1

n
N = 80< , and 80< is 

not open in R. Ù

Now, since the real line R is of special interest to us, let’s characterize the open subsets 

of  R . This will come in handy later. But it should be stressed that while this characteriza-

tion holds for  R, it does not have a satisfactory analogue even in R2 . (As we will see in a 

later chapter, not every open set in the plane can be written as a union of disjoint open 

disks.)

• Theorem:

If U is an open subset of R, then U may be written as a countable union of disjoint open 

intervals. That is, U = Ü
n=1

¥

In , where In = Han, bnL (these may be unbounded) and 

In Ý Im = Æ for n ¹ m.

Proof:

We know that U can be written as a union of open intervals (because each x Î U is in 

some open interval I with I Ì U). What we need to show is that U is a union of disjoint 

open intervals (such a union must be countable(to see why, check exercise 2.15 on 

Carother’s)) . 

We first claim that each x Î U is contained in a maximal open interval Ix Ì U in the 

sense that if x Î I Ì U , where I is an open interval, then we must have I Ì Ix. Indeed, 

given x Î U, let 

       ax = inf 8a : Ha, xD Ì U<     and     bx = sup 8b : @x, bM Ì U= .

Then, Ix = Hax, bxL satisfies x Î Ix Ì U, and Ix is clearly maximal. (Check this!) 

Next, notice that for any x, y Î U we have either Ix Ý Iy = Æ  or Ix = Iy. Why? Because if 

Ix Ý Iy ¹ Æ , then Ix Ü Iy is an open interval containing both Ix and Iy. By maximality we 

would then have Ix = Iy. It follows then that U is the union of disjoint (maximal) inter-

vals: U = Ü
xÎU

Ix . à

Now any time we make up a new definition in a metric space setting, it is usually very 

helpful to find an equivalent version stated exclusively in terms of sequences. To moti-

vate this in the particular case of open sets, let’s recall:

           xn Ì x � 8xn< is eventually in BΕHxL for any Ε > 0

and hence

            xn Ì x � 8xn< is eventually in U, for any open set U containing x .

This last statements essentially characterizes open sets:

• Theorem:

A set U in HM , dL is open iff, whenever a sequence 8xn<
n=1
¥  in M  converges to a point 

x Î U, we have xn Î U for all but finitely many n. 

Proof:

The forward implication is clear from the remarks preceding the theorem. Let’s see why 

the new condition implies that U is open:

If U is not open , then there is an x Î U such that BΕHxL Ý Uc ¹ Æ for all ¶ > 0. In particu-

lar , for each n there is some xn Î B1�nHxL Ý Uc. But then 8xn<
n=1
¥ Ì Uc and xn Ì x. Thus, 

the new condition also fails.(ÞÜ) à

In slightly different language, the above theorem is saying that the only way to reach a 

member of an open set is by traveling well inside the set; there are no inhabitants on the 

“frontier.” In essence, you cannot visit a single resident without seeing a whole neighbor-

hood!

  CLOSED SETS

Definition: A set F in a metric space HM , dL is said to be a closed set if its complement 

Fc = M\F is open. 

We can draw several immediate (although not terribly enlightening) conclusions:

Example:  

a) Ø  and M  are always closed. (This means that it is possible for a set to be both open 

and closed!) 

b) An arbitrary intersection of closed sets is closed. A finite union of closed sets is closed.

c) Any finite set is closed. Indeed, it is enough to show that 8x< is always closed. (Why?) 

Given any y Î M\8x< (that is, any y ¹ x), note that ¶ = dHx, yL > 0, and hence 

BΕH yL Ì M\8x<. 

d) In R, each of the intervals @a, bD, @a, ¥L, and H-¥, bD is closed. Also, N and D (the Can-

tor set, which we’ll study very soon) are closed sets. (Why?) 

e) In a discrete space, every subset is closed.

f) Sets are not “doors”! For instance, H0, 1D is neither open nor closed in R! (What??)

Ù

As yet, our definition is not terribly useful. It would be nice if we had an intrinsic charac-

terization of closed sets (something that did not depend on a knowledge of open sets), 

something in terms of sequences, for example. For this let’s first make an observation: F 

is closed iff Fc is open.

So F is closed iff

          x Î Fc � BΕHxL Ì Fc     for some Ε > 0 .

But this is the same as saying: F is closed iff

        BΕHxL Ý F ¹ Æ   for every Ε > 0 � x Î F .

        

This is our first characterization of closed sets. Intuitively speaking, closed sets are like 

blobs from a 60’s horror movie. A closed set will devour all points that reside in arbitrary 

proximity to the set.

                      

In order to better understand the nature of these “predatory” sets, let’s bring in a few 

definitions.

Definition: Let A be a subset of M . A point x Î M  is called a limit point of A if every 

neighborhood of x contains a point of A that is different from x itself, that is, if 

HBΕHxL\8x<L Ý A ¹ Æ  for any Ε > 0.

Example:  

a) Suppose you place a sugar cube, a cherry, and a queen-ant around an ant nest. Several 

moments later you take a snapshot of the event that ensues:

                

If we let A be the set of all ants in the picture, then the sugar cube, the cherry, and the 

queen-ant are all limit points of A (assuming that infinitely many ants cluster tighter and 

tighter around each object). Notice that s (sugar) and c (cherry) are not members of A, 

whereas Q Î A.

b) Let A = 8xn<
n=1
¥ Ì M  and suppose xn Ì

d

x Î M . Then x is the only limit point of A.

Note however, that a non-convergent sequence can have a huge number of limit points. 

For instance, let Q be arranged into a sequence 8rn<
n=1
¥ . Then every point of R is a limit 

point of Q. Ù

Definition: A set F is a closed set iff it contains all of its limits points.

Example:  

Let Z be the set of all zombies. Is Z a closed set?

Solution:

To answer this question, we must decide whether Z contains all of its limit points. To 

put this problem in “life or death” terms, suppose x is a limit point of Z. Then, would 

you shoot x with your sniper rifle?

               

If the concentric circles of the sniper scope never present the target in isolation, that is, 

if the heads of other zombies are always present within each target’s circle (no matter 

how small it is), then the target is a limit point of zombies. It will inevitably be “in con-

tact” with the living dead and therefore become a zombie (if it is not already a zombie). 

Therefore it appears that Z is a closed set (and that shooting the target might be the 

most humane course of action). Ù

Notice that the characterization of closed sets in terms of limit points can readily be 

translated into a sequential description. To see why, suppose x is a limit point of some 

set F. Then, by definition, BΕHxL Ý F ¹ Æ for every Ε > 0. But this means that for each 

1 � n, we can find some xn Î B1�nHxL Ý F. 

Thus, the sequence 8xn<
n=1
¥ Ì F converges to x. In other words, any limit point of F is 

necessarily a point of convergence of some sequence of elements of F.

This means that F is closed iff every sequence 8xn<
n=1
¥  that consists of elements of F and 

converges in M É F, must actually converge to an element of F.

We summarize our results in the following theorem:

• Theorem:

Given a set F in HM , dL, the following are equivalent: 

(i) F is closed; that is, Fc = M\F is open.

(ii) If BΕHxL Ý F ¹ Æ for every ¶ > 0, then x Î F. 

(iii) If a sequence 8xn<
n=1
¥ Ì F converges to some point x Î M , then x Î F.

Proof:

(i)�(ii): This is clear from our observations above and the definition of an open set. 

(ii)�(iii): Suppose that 8xn<
n=1
¥ Ì F and xn Ì

d

x Î M  . Then BΕHxL contains infinitely 

many xn for any ¶ > 0, and hence BΕHxL Ý F ¹ Æ for any ¶ > 0. Thus, x Î F by (ii).

(iii)�(ii): If BΕHxL Ý F ¹ Æ for all ¶ > 0, then for each n there is an xn Î B1�nHxL Ý F. The 

sequence 8xn<
n=1
¥  satisfies 8xn<

n=1
¥ Ì F and xn Ì x. Hence, x Î F by (iii).      à

Note: Most authors take (iii) as the definition of a closed set . In other words, condition 

(iii) says that a closed set must contain all of its limit points. That is, “closed” means 

closed under the operation of taking of limits.

Now, as we’ve seen, some sets are neither open nor closed. However, it is possible to 

describe the “open part” of a set and the “closure” of a set. Here’s what we’ll do: 

Definition: Given a set A in HM , dL, we define the interior of A, written intHAL or Ao, to 

be the largest open set contained in A. 

That is,

          

Note that Ao is clearly an open subset of A. 

We next define the closure of A, written clHAL or A , to be the smallest closed set contain-

ing A. That is, 

    clHAL = A = Ý8F : F is closed and A Ì F< .

Please take note of the “dual” nature of our two new definitions. Now it is clear that A is 

a closed set containing A (and necessarily the smallest one). But it’s not so clear which 

points are in A or, more precisely, which points are in A\A. 

We could use a description of A that is a little easier to “test” on a given set A. It follows 

from our last theorem that x Î A iff  BΕHxL Ý A ¹ Æ for every ¶ > 0. The description that 

we are looking for simply removes this last reference to A.

• Proposition:

x Î A iff BΕHxL Ý A ¹ Æ for every ¶ > 0. 

Proof:

(Ü)

If BΕHxL Ý A ¹ Æ for every ¶ > 0, then BΕHxL Ý A ¹ Æ for every ¶ > 0 (since A Ì A), and 

hence x Î A (since closed sets contain their limit points) . 

(Þ)

Now let x Î A and let ¶ > 0. If BΕHxL Ý A = Æ, then A is a subset of HBΕHxLLc, a closed set. 

Thus, A Ì BΕHHxLLc. (Why?) But this is a contradiction, because x Î A while x Ï HBΕHxLLc.(Þ

Ü) à

• Corollary:

x Î A iff there is a sequence 8xn<
n=1
¥ Ì A with xn Ì x.

That is, A is the set of all limits of convergent sequences in A (including limits of con-

stant sequences).

Example:

In HR,   × ¤L:

a)  intHH0, 1DL = H0, 1L       and      clHH0, 1DL = @0, 1D

b)  intJ: 1

n
>

n=1

¥

N = Æ          and      clJ: 1

n
>

n=1

¥

N = : 1

n
>

n=1

¥

Ü 80<

c)  intHQL = Æ                   and      clHQL = R Ù

12     Open and Closed Sets.nb



Before  we start our discussion of open and closed sets, let’s review some facts about 

sequences and subsequences and about equivalent metrics.

                 SUBSEQUENCES

Definition:  Given a sequence 8xn<
n=1
¥ , consider a sequence 8nk<

k=1
¥  of positive integers, 

such that n1 < n2 < n3 < ... . Then the sequence 9xn
k
=
k=1

¥
 is called a subsequence of xn.

Example:

Let M = ;Î, Ì, Ï?. Suppose 8xn<
n=1
¥ Ì M  is defined by

      xn =

Ì if n = 3 p

Î if n = 3 p + 1

Ï if n = 3 p + 2

Let 8nk<
k=1
¥  be given by nk = 3 k. What is 9xn

k
=
k=1

¥
?

Solution:

Notice that n1 = 3, n2 = 6, n3 = 9, etc.

So xn1
= x3 = Ì ,  xn2

= x6 = Ì,  and  xn3
= x9 = Ì,  etc.

Thus, 9xn
k
=
k=1

¥
 is the constant sequence 9Ì=

k=1

¥
. Ù

Example: Let 8xn<
n=1
¥ = 9 1

n
=
n=1

¥
. 

a) Suppose 8nk<
k=1
¥ = 82 k + 1<

k=1
¥ . What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 8x2 k+1<

k=1
¥ = 9 1

2 k+1
=
k=1

¥
= 9 1

3
,

1

5
,

1

7
, ...= .   ª

b) Suppose 8nk<
k=1
¥ = 92k=

k=1

¥
. What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 9x

2k=
k=1

¥
= 9 1

2k
=
k=1

¥
= 9 1

2
,

1

4
,

1

8
, ...=.    ª

c) Suppose 8nk<
k=1
¥ = 82, 1, 3, 4, 5, 6, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

2
, 1,

1

3
,

1

4
, ...=. This sequence does not match the order of 8xn< and therefore 

fails to be a subsequence. Notice that n1 = 2 > 1 = n2.   ª

d) Suppose 8nk<
k=1
¥ = 84, 2, 8, 6, 12, 10, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

4
,

1

2
,

1

8
,

1

6
,

1

12
,

1

10
, ...=. This sequence does not match the order of 8xn< and 

therefore fails to be a subsequence of 8xn<. In particular 8nk<
k=1
¥  is not an increasing 

sequence of positive integers.   ª Ù

Note: Subsequences are useful tools that will later help us to describe such important 

concepts like completeness and compactness. For now however, we will have to be satis-

fied with the simple analysis of the relationship between subsequences, convergence, 

and Cauchy sequences. 

 

• Proposition:

If xn Ì
d

x, then xn
k

Ì
d

x for any subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ .

 

Proof:

We must show that for any Ε > 0, there exists K > 0 such that dIxn
k
, xM < Ε  whenever 

k ³ K.

Since xn Ì
d

x, we know that dHxn, xL < Ε  whenever n ³ N . Setting K = N , notice that 

nk ³ K. Thus, when k ³ N , we have dIxn
k
, xM < Ε . à

• Proposition:

A Cauchy sequence with a convergent subsequence converges.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is a convergent subsequence with 

xn
k

Ì
d

x. We must show that xn Ì
d

x. 

For Ε > 0, let N1 be such that dHxn, xmL <
Ε

2
 whenever n, m ³ N1. Also let N2 be such that 

dIxn
k
, xM <

Ε

2
 whenever k ³ N2. Now let N = max 8N1, N2<. 

If n, m > N , then 

              dHxn, xnmL £ dHxn, xmL <
Ε

2
      and       dHxnm, xL <

Ε

2
 .

Thus,

      dHxn, xL £ dHxn, xnm
L + dHxnm

, xL
           £ dHxn, xmL + dHxnm

, xL

           <
Ε

2
+

Ε

2
= Ε . à

 

• Proposition:

Every subsequence of a Cauchy sequence is itself a Cauchy sequence.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is any  subsequence. For Ε > 0, there is 

some N > 0 such that dHxn, xmL < Ε  whenever n, m ³ N . Notice that nn ³ n and nm ³ m. 

Thus dHxnn
, xnm

L < Ε. à

 

• Proposition:

If every subsequence of 8xn<
n=1
¥  has a further subsequence that converges to x, then 

8xn<
n=1
¥  converges to x.

 

Proof:

Suppose that 8xn<
n=1
¥  does not converge to x, but that every subsequence of 8xn<

n=1
¥  has a 

further subsequence, which converges to x.

If xn Ì
not

x (i.e. if xn does not converge to x), then infinitely many elements of the 

sequence 8xn<
n=1
¥  are further from x than some Ε > 0. That is, the set A = 8xn : dHxn, xL ³ Ε< 

is infinite if Ε is small enough. 

Notice that the elements of A form a subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ . Our assumption 

dictates that some further subsequence 9xn
kt

=
t=1

¥
 converges to x. But all the elements of 

9xn
kt

=
t=1

¥
 are elements of A.

In other words, dIxn
kt
, xM ³ Ε " t Î N, implying that xn

kt
Ì
not

x . (ÞÜ)         à

     EQUIVALENT METRICS

We have already seen that the metric at hand determines which sequences are Cauchy 

and which sequences converge. Later we will see that the convergent sequences in 

HM , dL in turn determine the open and closed sets of HM , dL and therefore the continous 

functions on HM , dL.
Given another metric function Ρ, we have generally no reason to expect the metric spaces 

HM , dL and HM , ΡL to have the same convergent sequences. In this section we would like 

to say a few words about metric functions that generate the same convergent sequences.

Definition: Two metrics d and Ρ on a set M  are said to be equivalent metrics if they 

generate the same convergent sequences: that is, dHxn, xL Ì 0  iff ΡHxn, xL Ì 0.

It might be comforting to know that most metric functions on R (or @0, ¥L) hetherto 

considered are equivalent metrics. The following proposition explains why.

• Proposition:

Let d be a metric on M  and suppose that  Ρ is defined by ΡHx, yL = f HdHx, yLL, where 

f : @0, ¥L�@0, ¥L satisfies the following three properties:

i) f HtL ³ 0 with equality iff t = 0.

ii) f ¢HtL > 0  for t Î H0, ¥L

iii) f ¢¢HtL < 0  for t Î H0, ¥L 
Then d and Ρ are equivalent. 

 

Proof:

Notice that f  is continuous and invertible. Since f ¢HtL > 0, we may state that f -1 is differ-

entiable and therefore continuous. 

Next, we need to observe that if g : U Ì R�R is continuous at 0, then for any sequence 

8tn<
n=1
¥ Ì U with tn Ì 0, we have gHtnL Ì gH0L (this will be discussed later on when we 

consider continuous functions and identify their properties).

Now suppose that 8xn<
n=1
¥ Ì M  with xn Ì

d

x. Then dHxn, xL Ì 0. Since f  is continuous, 

we see that f HdHxn, xLL Ì f H0L = 0 by setting tn = dHxn, xL. 
Thus,

 dHxn, xL Ì 0 � f HdHxn, xLL = ΡHxn, xL Ì 0.

On the other hand, if ΡHxn, xL Ì 0, then dHxn, xL = f -1HΡHxn, xLL Ì 0 because f -1 is also 

continuous at 0. We have thus established that dHxn, xL Ì 0  iff ΡHxn, xL Ì 0. Hence 

d and Ρ are equivalent.    à

Example:

The following are all equivalent metrics on R:

• dHx, yL =  x - y¤        • ΡHx, yL =  x - y¤        • ¶Hx, yL =
 x- y¤

1+ x- y¤

• ΖHx, yL = lnH x - y¤ + 1L       • jHx, yL =
lnH x- y¤+1L

1+ lnH x- y¤+1L
Ù

Note: Equivalent metrics preserve convergent sequences. Must they also have the same 

cauchy sequences? The answer is NO, as we can verify in the following example.

Example:

Let M = H0, ¥L. Then dHx, yL =  x - y¤ and ΡHx, yL = ¢ 1

x
-

1

y
¦ are equivalent metrics on M  

that do not generate the same Cauchy sequences. 

To see that d and Ρ are equivalent, observe that the function f HtL =
1

t
 is continuous on 

H0, ¥L. Notice also that f -1HtL = f HtL. That is, f  is its own inverse. 

Now, if xn Ì
d

x, then f HxnL Ì f HxL, or   f HxnL - f HxL¤ Ì 0. Hence xn Ì
d

x implies that 

¢ 1

xn

-
1

x
¦ Ì 0 or xn Ì

Ρ

x . 

On the other hand, xn Ì
Ρ

x implies that f -1HxnL Ì f -1HxL. 
That is, 

xn Ì
Ρ

x � ¡ f -1HxnL - f -1HxL¥ = ¢ 1

xn

-
1

x
¦ Ì 0 .

This in turn implies that ¢ f J 1

xn

M - f J 1

x
M¦ =  xn - x¤ Ì 0.

Thus we have shown that d and Ρ are equivalent.  ª

To see that d and Ρ fail to generate the same Cauchy sequences, notice that : 1

n
>

n=1

¥

 is a 

Cauchy sequence when it is considered under the metric dHx, yL =  x - y¤. Under the 

metric Ρ however, ΡJ 1

n
,

1

m
N =  n - m¤ ³ 1 if m ¹ n. 

Thus : 1

n
>

n=1

¥

 is not Cauchy under Ρ.   ª   Ù

Example:

Let M = R
n. 

Then d1Hx, yL = ÈÈ x - y ÈÈ1 , d2Hx, yL = ÈÈ x - y ÈÈ2 , and d¥Hx, yL = ÈÈ x - y ÈÈ¥  are all equiva-

lent metrics on Rn because

      ÈÈ x - y ÈÈ¥ £ ÈÈ x - y ÈÈ2 £ ÈÈ x - y ÈÈ1
while

 ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ¥    and   ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ2. 

We should verify that d1, d2, and d3 all generate the same Cauchy sequences 

on Rn.              Ù

The last example is very important as it allows us to make the following definition:

Definition: Given two metric spaces HM , dL and HN , ΡL, we can define a metric on the 

product M ´ N  in a variety of ways. Our only requirement is that a sequence of pairs 

Han, xnL in M ´ N  should converge precisely when both coordinate sequences 8an<
n=1
¥ and 

8xn<
n=1
¥  converge in HM , dL and HN , ΡL, respectively.

Each of the following define metrics on M ´ N  that enjoy this property. Moreover, they 

are equivalent :

• d1HHa, xL, Hb, yLL = dHa, bL + ΡHx, yL

• d2HHa, xL, Hb, yLL = IdHa, bL2 + ΡHx, yL2M1�2

• d¥HHa, xL, Hb, yLL = max 8dHa, bL, ΡHx, yL<
Henceforth, any implicit reference to “the” metric on M ´ N , sometimes called the prod-

uct metric, will mean one of d1, d2, or d¥. Any one of them will serve equally well. 

               OPEN SETS

Definition: A set U in a metric space HM , dL is called an open set if  U contains a neigh-

borhood of each of its points. In other words, U is an open set if, given x Î U, there is 

some Ε > 0 such that BΕHxL Ì U.

Example:  

a) In any metric space, the whole space M  is an open set. The empty set Æ is also open 

(by default). 

b) In R, any open interval is an open set. Indeed, given x Î Ha, bL, let Ε = min 8x - a, b - x<. 
Then Ε > 0  and Hx - Ε, x + ΕL Ì Ha, bL. The cases Ha, ¥L and H-¥, bL are similar. 

While we’re at it, notice that the interval @0, 1L, for example, is not open in R because it 

does not contain an entire neighborhood of 0.

c) In a discrete space, B1HxL = 8x< is an open set for any x. It follows that every subset of a 

discrete space is open. Ù

Before we get too carried away, we should follow the lead suggested by the last example 

and check that every open ball is in fact an open set.

• Proposition:

For any x Î M  and any Ε > 0, the open ball BΕHxL is an open set.

Proof:

Consult the drawing below to understand the motivation behind the argument of the 

proof.

                 

Let y Î BΕHxL. Then dHx, yL < Ε  and hence ∆ = Ε - dHx, yL > 0.

We will show that B∆H yL Ì BΕHxL. 
Indeed, if dH y, zL < ∆, then, by the triangle inequality

            dHx, zL £ dHx, yL + dH y, zL < dHx, yL + ∆ = dHx, yL + Ε - dHx, yL = Ε.             à

Let’s collect our thoughts. First, every open ball is open. Next, it follows from the defini-

tion of open sets that an open set must actually be a union of open balls . In fact, if  U is 

open, then U = Ü8BΕHxL : BΕHxL Ì U<. 
Moreover, any arbitrary union of open balls is again an open set. Here’s what all of this 

means:

• Theorem:

An arbitrary union of open sets is again open. That is, if 8UΑ<ΑÎA is any collection of open 

sets, then V = Ü
ΑÎA

UΑ is open.

Proof:

If x Î V , then x Î UΑ for some Α Î A. But then, since UΑ is open, BΕHxL Ì UΑ Ì V  for 

some Ε > 0. à

Intersections aren’t nearly as generous: 

• Theorem:

A finite intersection of open sets is open. That is, if each of  U1, … , Un is open, then so 

is V = U1 Ý … Ý Un . 

Proof:

If x Î V , then x Î Ui for all i = 1, … , n. Thus, for each i there is an ¶i > 0 such that 

BΕi
Ì Ui. But then, setting Ε = min 8Ε1, ..., Εn< > 0, we have BΕHxL Ì Ý

i=1

n

Ui = V .    à

Example: 

The word “finite” is crucial in the above theorem because Ý
n=1

¥

J-
1

n
,

1

n
N = 80< , and 80< is 

not open in R. Ù

Now, since the real line R is of special interest to us, let’s characterize the open subsets 

of  R . This will come in handy later. But it should be stressed that while this characteriza-

tion holds for  R, it does not have a satisfactory analogue even in R2 . (As we will see in a 

later chapter, not every open set in the plane can be written as a union of disjoint open 

disks.)

• Theorem:

If U is an open subset of R, then U may be written as a countable union of disjoint open 

intervals. That is, U = Ü
n=1

¥

In , where In = Han, bnL (these may be unbounded) and 

In Ý Im = Æ for n ¹ m.

Proof:

We know that U can be written as a union of open intervals (because each x Î U is in 

some open interval I with I Ì U). What we need to show is that U is a union of disjoint 

open intervals (such a union must be countable(to see why, check exercise 2.15 on 

Carother’s)) . 

We first claim that each x Î U is contained in a maximal open interval Ix Ì U in the 

sense that if x Î I Ì U , where I is an open interval, then we must have I Ì Ix. Indeed, 

given x Î U, let 

       ax = inf 8a : Ha, xD Ì U<     and     bx = sup 8b : @x, bM Ì U= .

Then, Ix = Hax, bxL satisfies x Î Ix Ì U, and Ix is clearly maximal. (Check this!) 

Next, notice that for any x, y Î U we have either Ix Ý Iy = Æ  or Ix = Iy. Why? Because if 

Ix Ý Iy ¹ Æ , then Ix Ü Iy is an open interval containing both Ix and Iy. By maximality we 

would then have Ix = Iy. It follows then that U is the union of disjoint (maximal) inter-

vals: U = Ü
xÎU

Ix . à

Now any time we make up a new definition in a metric space setting, it is usually very 

helpful to find an equivalent version stated exclusively in terms of sequences. To moti-

vate this in the particular case of open sets, let’s recall:

           xn Ì x � 8xn< is eventually in BΕHxL for any Ε > 0

and hence

            xn Ì x � 8xn< is eventually in U, for any open set U containing x .

This last statements essentially characterizes open sets:

• Theorem:

A set U in HM , dL is open iff, whenever a sequence 8xn<
n=1
¥  in M  converges to a point 

x Î U, we have xn Î U for all but finitely many n. 

Proof:

The forward implication is clear from the remarks preceding the theorem. Let’s see why 

the new condition implies that U is open:

If U is not open , then there is an x Î U such that BΕHxL Ý Uc ¹ Æ for all ¶ > 0. In particu-

lar , for each n there is some xn Î B1�nHxL Ý Uc. But then 8xn<
n=1
¥ Ì Uc and xn Ì x. Thus, 

the new condition also fails.(ÞÜ) à

In slightly different language, the above theorem is saying that the only way to reach a 

member of an open set is by traveling well inside the set; there are no inhabitants on the 

“frontier.” In essence, you cannot visit a single resident without seeing a whole neighbor-

hood!

  CLOSED SETS

Definition: A set F in a metric space HM , dL is said to be a closed set if its complement 

Fc = M\F is open. 

We can draw several immediate (although not terribly enlightening) conclusions:

Example:  

a) Ø  and M  are always closed. (This means that it is possible for a set to be both open 

and closed!) 

b) An arbitrary intersection of closed sets is closed. A finite union of closed sets is closed.

c) Any finite set is closed. Indeed, it is enough to show that 8x< is always closed. (Why?) 

Given any y Î M\8x< (that is, any y ¹ x), note that ¶ = dHx, yL > 0, and hence 

BΕH yL Ì M\8x<. 

d) In R, each of the intervals @a, bD, @a, ¥L, and H-¥, bD is closed. Also, N and D (the Can-

tor set, which we’ll study very soon) are closed sets. (Why?) 

e) In a discrete space, every subset is closed.

f) Sets are not “doors”! For instance, H0, 1D is neither open nor closed in R! (What??)

Ù

As yet, our definition is not terribly useful. It would be nice if we had an intrinsic charac-

terization of closed sets (something that did not depend on a knowledge of open sets), 

something in terms of sequences, for example. For this let’s first make an observation: F 

is closed iff Fc is open.

So F is closed iff

          x Î Fc � BΕHxL Ì Fc     for some Ε > 0 .

But this is the same as saying: F is closed iff

        BΕHxL Ý F ¹ Æ   for every Ε > 0 � x Î F .

        

This is our first characterization of closed sets. Intuitively speaking, closed sets are like 

blobs from a 60’s horror movie. A closed set will devour all points that reside in arbitrary 

proximity to the set.

                      

In order to better understand the nature of these “predatory” sets, let’s bring in a few 

definitions.

Definition: Let A be a subset of M . A point x Î M  is called a limit point of A if every 

neighborhood of x contains a point of A that is different from x itself, that is, if 

HBΕHxL\8x<L Ý A ¹ Æ  for any Ε > 0.

Example:  

a) Suppose you place a sugar cube, a cherry, and a queen-ant around an ant nest. Several 

moments later you take a snapshot of the event that ensues:

                

If we let A be the set of all ants in the picture, then the sugar cube, the cherry, and the 

queen-ant are all limit points of A (assuming that infinitely many ants cluster tighter and 

tighter around each object). Notice that s (sugar) and c (cherry) are not members of A, 

whereas Q Î A.

b) Let A = 8xn<
n=1
¥ Ì M  and suppose xn Ì

d

x Î M . Then x is the only limit point of A.

Note however, that a non-convergent sequence can have a huge number of limit points. 

For instance, let Q be arranged into a sequence 8rn<
n=1
¥ . Then every point of R is a limit 

point of Q. Ù

Definition: A set F is a closed set iff it contains all of its limits points.

Example:  

Let Z be the set of all zombies. Is Z a closed set?

Solution:

To answer this question, we must decide whether Z contains all of its limit points. To 

put this problem in “life or death” terms, suppose x is a limit point of Z. Then, would 

you shoot x with your sniper rifle?

               

If the concentric circles of the sniper scope never present the target in isolation, that is, 

if the heads of other zombies are always present within each target’s circle (no matter 

how small it is), then the target is a limit point of zombies. It will inevitably be “in con-

tact” with the living dead and therefore become a zombie (if it is not already a zombie). 

Therefore it appears that Z is a closed set (and that shooting the target might be the 

most humane course of action). Ù

Notice that the characterization of closed sets in terms of limit points can readily be 

translated into a sequential description. To see why, suppose x is a limit point of some 

set F. Then, by definition, BΕHxL Ý F ¹ Æ for every Ε > 0. But this means that for each 

1 � n, we can find some xn Î B1�nHxL Ý F. 

Thus, the sequence 8xn<
n=1
¥ Ì F converges to x. In other words, any limit point of F is 

necessarily a point of convergence of some sequence of elements of F.

This means that F is closed iff every sequence 8xn<
n=1
¥  that consists of elements of F and 

converges in M É F, must actually converge to an element of F.

We summarize our results in the following theorem:

• Theorem:

Given a set F in HM , dL, the following are equivalent: 

(i) F is closed; that is, Fc = M\F is open.

(ii) If BΕHxL Ý F ¹ Æ for every ¶ > 0, then x Î F. 

(iii) If a sequence 8xn<
n=1
¥ Ì F converges to some point x Î M , then x Î F.

Proof:

(i)�(ii): This is clear from our observations above and the definition of an open set. 

(ii)�(iii): Suppose that 8xn<
n=1
¥ Ì F and xn Ì

d

x Î M  . Then BΕHxL contains infinitely 

many xn for any ¶ > 0, and hence BΕHxL Ý F ¹ Æ for any ¶ > 0. Thus, x Î F by (ii).

(iii)�(ii): If BΕHxL Ý F ¹ Æ for all ¶ > 0, then for each n there is an xn Î B1�nHxL Ý F. The 

sequence 8xn<
n=1
¥  satisfies 8xn<

n=1
¥ Ì F and xn Ì x. Hence, x Î F by (iii).      à

Note: Most authors take (iii) as the definition of a closed set . In other words, condition 

(iii) says that a closed set must contain all of its limit points. That is, “closed” means 

closed under the operation of taking of limits.

Now, as we’ve seen, some sets are neither open nor closed. However, it is possible to 

describe the “open part” of a set and the “closure” of a set. Here’s what we’ll do: 

Definition: Given a set A in HM , dL, we define the interior of A, written intHAL or Ao, to 

be the largest open set contained in A. 

That is,

          

Note that Ao is clearly an open subset of A. 

We next define the closure of A, written clHAL or A , to be the smallest closed set contain-

ing A. That is, 

    clHAL = A = Ý8F : F is closed and A Ì F< .

Please take note of the “dual” nature of our two new definitions. Now it is clear that A is 

a closed set containing A (and necessarily the smallest one). But it’s not so clear which 

points are in A or, more precisely, which points are in A\A. 

We could use a description of A that is a little easier to “test” on a given set A. It follows 

from our last theorem that x Î A iff  BΕHxL Ý A ¹ Æ for every ¶ > 0. The description that 

we are looking for simply removes this last reference to A.

• Proposition:

x Î A iff BΕHxL Ý A ¹ Æ for every ¶ > 0. 

Proof:

(Ü)

If BΕHxL Ý A ¹ Æ for every ¶ > 0, then BΕHxL Ý A ¹ Æ for every ¶ > 0 (since A Ì A), and 

hence x Î A (since closed sets contain their limit points) . 

(Þ)

Now let x Î A and let ¶ > 0. If BΕHxL Ý A = Æ, then A is a subset of HBΕHxLLc, a closed set. 

Thus, A Ì BΕHHxLLc. (Why?) But this is a contradiction, because x Î A while x Ï HBΕHxLLc.(Þ

Ü) à

• Corollary:

x Î A iff there is a sequence 8xn<
n=1
¥ Ì A with xn Ì x.

That is, A is the set of all limits of convergent sequences in A (including limits of con-

stant sequences).

Example:

In HR,   × ¤L:

a)  intHH0, 1DL = H0, 1L       and      clHH0, 1DL = @0, 1D

b)  intJ: 1

n
>

n=1

¥

N = Æ          and      clJ: 1

n
>

n=1

¥

N = : 1

n
>

n=1

¥

Ü 80<

c)  intHQL = Æ                   and      clHQL = R Ù
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Before  we start our discussion of open and closed sets, let’s review some facts about 

sequences and subsequences and about equivalent metrics.

                 SUBSEQUENCES

Definition:  Given a sequence 8xn<
n=1
¥ , consider a sequence 8nk<

k=1
¥  of positive integers, 

such that n1 < n2 < n3 < ... . Then the sequence 9xn
k
=
k=1

¥
 is called a subsequence of xn.

Example:

Let M = ;Î, Ì, Ï?. Suppose 8xn<
n=1
¥ Ì M  is defined by

      xn =

Ì if n = 3 p

Î if n = 3 p + 1

Ï if n = 3 p + 2

Let 8nk<
k=1
¥  be given by nk = 3 k. What is 9xn

k
=
k=1

¥
?

Solution:

Notice that n1 = 3, n2 = 6, n3 = 9, etc.

So xn1
= x3 = Ì ,  xn2

= x6 = Ì,  and  xn3
= x9 = Ì,  etc.

Thus, 9xn
k
=
k=1

¥
 is the constant sequence 9Ì=

k=1

¥
. Ù

Example: Let 8xn<
n=1
¥ = 9 1

n
=
n=1

¥
. 

a) Suppose 8nk<
k=1
¥ = 82 k + 1<

k=1
¥ . What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 8x2 k+1<

k=1
¥ = 9 1

2 k+1
=
k=1

¥
= 9 1

3
,

1

5
,

1

7
, ...= .   ª

b) Suppose 8nk<
k=1
¥ = 92k=

k=1

¥
. What is 9xn

k
=
k=1

¥
?

Solution:

9xn
k
=
k=1

¥
= 9x

2k=
k=1

¥
= 9 1

2k
=
k=1

¥
= 9 1

2
,

1

4
,

1

8
, ...=.    ª

c) Suppose 8nk<
k=1
¥ = 82, 1, 3, 4, 5, 6, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

2
, 1,

1

3
,

1

4
, ...=. This sequence does not match the order of 8xn< and therefore 

fails to be a subsequence. Notice that n1 = 2 > 1 = n2.   ª

d) Suppose 8nk<
k=1
¥ = 84, 2, 8, 6, 12, 10, ...<. What is 9xn

k
=
k=1

¥
? Is it a subsequence of 8xn<

n=1
¥ ?

Solution:

9xn
k
=
k=1

¥
= 9 1

4
,

1

2
,

1

8
,

1

6
,

1

12
,

1

10
, ...=. This sequence does not match the order of 8xn< and 

therefore fails to be a subsequence of 8xn<. In particular 8nk<
k=1
¥  is not an increasing 

sequence of positive integers.   ª Ù

Note: Subsequences are useful tools that will later help us to describe such important 

concepts like completeness and compactness. For now however, we will have to be satis-

fied with the simple analysis of the relationship between subsequences, convergence, 

and Cauchy sequences. 

 

• Proposition:

If xn Ì
d

x, then xn
k

Ì
d

x for any subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ .

 

Proof:

We must show that for any Ε > 0, there exists K > 0 such that dIxn
k
, xM < Ε  whenever 

k ³ K.

Since xn Ì
d

x, we know that dHxn, xL < Ε  whenever n ³ N . Setting K = N , notice that 

nk ³ K. Thus, when k ³ N , we have dIxn
k
, xM < Ε . à

• Proposition:

A Cauchy sequence with a convergent subsequence converges.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is a convergent subsequence with 

xn
k

Ì
d

x. We must show that xn Ì
d

x. 

For Ε > 0, let N1 be such that dHxn, xmL <
Ε

2
 whenever n, m ³ N1. Also let N2 be such that 

dIxn
k
, xM <

Ε

2
 whenever k ³ N2. Now let N = max 8N1, N2<. 

If n, m > N , then 

              dHxn, xnmL £ dHxn, xmL <
Ε

2
      and       dHxnm, xL <

Ε

2
 .

Thus,

      dHxn, xL £ dHxn, xnm
L + dHxnm

, xL
           £ dHxn, xmL + dHxnm

, xL

           <
Ε

2
+

Ε

2
= Ε . à

 

• Proposition:

Every subsequence of a Cauchy sequence is itself a Cauchy sequence.

 

Proof:

Let 8xn<
n=1
¥  be Cauchy and suppose that 9xn

k
=
k=1

¥
 is any  subsequence. For Ε > 0, there is 

some N > 0 such that dHxn, xmL < Ε  whenever n, m ³ N . Notice that nn ³ n and nm ³ m. 

Thus dHxnn
, xnm

L < Ε. à

 

• Proposition:

If every subsequence of 8xn<
n=1
¥  has a further subsequence that converges to x, then 

8xn<
n=1
¥  converges to x.

 

Proof:

Suppose that 8xn<
n=1
¥  does not converge to x, but that every subsequence of 8xn<

n=1
¥  has a 

further subsequence, which converges to x.

If xn Ì
not

x (i.e. if xn does not converge to x), then infinitely many elements of the 

sequence 8xn<
n=1
¥  are further from x than some Ε > 0. That is, the set A = 8xn : dHxn, xL ³ Ε< 

is infinite if Ε is small enough. 

Notice that the elements of A form a subsequence 9xn
k
=
k=1

¥
 of 8xn<

n=1
¥ . Our assumption 

dictates that some further subsequence 9xn
kt

=
t=1

¥
 converges to x. But all the elements of 

9xn
kt

=
t=1

¥
 are elements of A.

In other words, dIxn
kt
, xM ³ Ε " t Î N, implying that xn

kt
Ì
not

x . (ÞÜ)         à

     EQUIVALENT METRICS

We have already seen that the metric at hand determines which sequences are Cauchy 

and which sequences converge. Later we will see that the convergent sequences in 

HM , dL in turn determine the open and closed sets of HM , dL and therefore the continous 

functions on HM , dL.
Given another metric function Ρ, we have generally no reason to expect the metric spaces 

HM , dL and HM , ΡL to have the same convergent sequences. In this section we would like 

to say a few words about metric functions that generate the same convergent sequences.

Definition: Two metrics d and Ρ on a set M  are said to be equivalent metrics if they 

generate the same convergent sequences: that is, dHxn, xL Ì 0  iff ΡHxn, xL Ì 0.

It might be comforting to know that most metric functions on R (or @0, ¥L) hetherto 

considered are equivalent metrics. The following proposition explains why.

• Proposition:

Let d be a metric on M  and suppose that  Ρ is defined by ΡHx, yL = f HdHx, yLL, where 

f : @0, ¥L�@0, ¥L satisfies the following three properties:

i) f HtL ³ 0 with equality iff t = 0.

ii) f ¢HtL > 0  for t Î H0, ¥L

iii) f ¢¢HtL < 0  for t Î H0, ¥L 
Then d and Ρ are equivalent. 

 

Proof:

Notice that f  is continuous and invertible. Since f ¢HtL > 0, we may state that f -1 is differ-

entiable and therefore continuous. 

Next, we need to observe that if g : U Ì R�R is continuous at 0, then for any sequence 

8tn<
n=1
¥ Ì U with tn Ì 0, we have gHtnL Ì gH0L (this will be discussed later on when we 

consider continuous functions and identify their properties).

Now suppose that 8xn<
n=1
¥ Ì M  with xn Ì

d

x. Then dHxn, xL Ì 0. Since f  is continuous, 

we see that f HdHxn, xLL Ì f H0L = 0 by setting tn = dHxn, xL. 
Thus,

 dHxn, xL Ì 0 � f HdHxn, xLL = ΡHxn, xL Ì 0.

On the other hand, if ΡHxn, xL Ì 0, then dHxn, xL = f -1HΡHxn, xLL Ì 0 because f -1 is also 

continuous at 0. We have thus established that dHxn, xL Ì 0  iff ΡHxn, xL Ì 0. Hence 

d and Ρ are equivalent.    à

Example:

The following are all equivalent metrics on R:

• dHx, yL =  x - y¤        • ΡHx, yL =  x - y¤        • ¶Hx, yL =
 x- y¤

1+ x- y¤

• ΖHx, yL = lnH x - y¤ + 1L       • jHx, yL =
lnH x- y¤+1L

1+ lnH x- y¤+1L
Ù

Note: Equivalent metrics preserve convergent sequences. Must they also have the same 

cauchy sequences? The answer is NO, as we can verify in the following example.

Example:

Let M = H0, ¥L. Then dHx, yL =  x - y¤ and ΡHx, yL = ¢ 1

x
-

1

y
¦ are equivalent metrics on M  

that do not generate the same Cauchy sequences. 

To see that d and Ρ are equivalent, observe that the function f HtL =
1

t
 is continuous on 

H0, ¥L. Notice also that f -1HtL = f HtL. That is, f  is its own inverse. 

Now, if xn Ì
d

x, then f HxnL Ì f HxL, or   f HxnL - f HxL¤ Ì 0. Hence xn Ì
d

x implies that 

¢ 1

xn

-
1

x
¦ Ì 0 or xn Ì

Ρ

x . 

On the other hand, xn Ì
Ρ

x implies that f -1HxnL Ì f -1HxL. 
That is, 

xn Ì
Ρ

x � ¡ f -1HxnL - f -1HxL¥ = ¢ 1

xn

-
1

x
¦ Ì 0 .

This in turn implies that ¢ f J 1

xn

M - f J 1

x
M¦ =  xn - x¤ Ì 0.

Thus we have shown that d and Ρ are equivalent.  ª

To see that d and Ρ fail to generate the same Cauchy sequences, notice that : 1

n
>

n=1

¥

 is a 

Cauchy sequence when it is considered under the metric dHx, yL =  x - y¤. Under the 

metric Ρ however, ΡJ 1

n
,

1

m
N =  n - m¤ ³ 1 if m ¹ n. 

Thus : 1

n
>

n=1

¥

 is not Cauchy under Ρ.   ª   Ù

Example:

Let M = R
n. 

Then d1Hx, yL = ÈÈ x - y ÈÈ1 , d2Hx, yL = ÈÈ x - y ÈÈ2 , and d¥Hx, yL = ÈÈ x - y ÈÈ¥  are all equiva-

lent metrics on Rn because

      ÈÈ x - y ÈÈ¥ £ ÈÈ x - y ÈÈ2 £ ÈÈ x - y ÈÈ1
while

 ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ¥    and   ÈÈ x - y ÈÈ1 £ n ÈÈ x - y ÈÈ2. 

We should verify that d1, d2, and d3 all generate the same Cauchy sequences 

on Rn.              Ù

The last example is very important as it allows us to make the following definition:

Definition: Given two metric spaces HM , dL and HN , ΡL, we can define a metric on the 

product M ´ N  in a variety of ways. Our only requirement is that a sequence of pairs 

Han, xnL in M ´ N  should converge precisely when both coordinate sequences 8an<
n=1
¥ and 

8xn<
n=1
¥  converge in HM , dL and HN , ΡL, respectively.

Each of the following define metrics on M ´ N  that enjoy this property. Moreover, they 

are equivalent :

• d1HHa, xL, Hb, yLL = dHa, bL + ΡHx, yL

• d2HHa, xL, Hb, yLL = IdHa, bL2 + ΡHx, yL2M1�2

• d¥HHa, xL, Hb, yLL = max 8dHa, bL, ΡHx, yL<
Henceforth, any implicit reference to “the” metric on M ´ N , sometimes called the prod-

uct metric, will mean one of d1, d2, or d¥. Any one of them will serve equally well. 

               OPEN SETS

Definition: A set U in a metric space HM , dL is called an open set if  U contains a neigh-

borhood of each of its points. In other words, U is an open set if, given x Î U, there is 

some Ε > 0 such that BΕHxL Ì U.

Example:  

a) In any metric space, the whole space M  is an open set. The empty set Æ is also open 

(by default). 

b) In R, any open interval is an open set. Indeed, given x Î Ha, bL, let Ε = min 8x - a, b - x<. 
Then Ε > 0  and Hx - Ε, x + ΕL Ì Ha, bL. The cases Ha, ¥L and H-¥, bL are similar. 

While we’re at it, notice that the interval @0, 1L, for example, is not open in R because it 

does not contain an entire neighborhood of 0.

c) In a discrete space, B1HxL = 8x< is an open set for any x. It follows that every subset of a 

discrete space is open. Ù

Before we get too carried away, we should follow the lead suggested by the last example 

and check that every open ball is in fact an open set.

• Proposition:

For any x Î M  and any Ε > 0, the open ball BΕHxL is an open set.

Proof:

Consult the drawing below to understand the motivation behind the argument of the 

proof.

                 

Let y Î BΕHxL. Then dHx, yL < Ε  and hence ∆ = Ε - dHx, yL > 0.

We will show that B∆H yL Ì BΕHxL. 
Indeed, if dH y, zL < ∆, then, by the triangle inequality

            dHx, zL £ dHx, yL + dH y, zL < dHx, yL + ∆ = dHx, yL + Ε - dHx, yL = Ε.             à

Let’s collect our thoughts. First, every open ball is open. Next, it follows from the defini-

tion of open sets that an open set must actually be a union of open balls . In fact, if  U is 

open, then U = Ü8BΕHxL : BΕHxL Ì U<. 
Moreover, any arbitrary union of open balls is again an open set. Here’s what all of this 

means:

• Theorem:

An arbitrary union of open sets is again open. That is, if 8UΑ<ΑÎA is any collection of open 

sets, then V = Ü
ΑÎA

UΑ is open.

Proof:

If x Î V , then x Î UΑ for some Α Î A. But then, since UΑ is open, BΕHxL Ì UΑ Ì V  for 

some Ε > 0. à

Intersections aren’t nearly as generous: 

• Theorem:

A finite intersection of open sets is open. That is, if each of  U1, … , Un is open, then so 

is V = U1 Ý … Ý Un . 

Proof:

If x Î V , then x Î Ui for all i = 1, … , n. Thus, for each i there is an ¶i > 0 such that 

BΕi
Ì Ui. But then, setting Ε = min 8Ε1, ..., Εn< > 0, we have BΕHxL Ì Ý

i=1

n

Ui = V .    à

Example: 

The word “finite” is crucial in the above theorem because Ý
n=1

¥

J-
1

n
,

1

n
N = 80< , and 80< is 

not open in R. Ù

Now, since the real line R is of special interest to us, let’s characterize the open subsets 

of  R . This will come in handy later. But it should be stressed that while this characteriza-

tion holds for  R, it does not have a satisfactory analogue even in R2 . (As we will see in a 

later chapter, not every open set in the plane can be written as a union of disjoint open 

disks.)

• Theorem:

If U is an open subset of R, then U may be written as a countable union of disjoint open 

intervals. That is, U = Ü
n=1

¥

In , where In = Han, bnL (these may be unbounded) and 

In Ý Im = Æ for n ¹ m.

Proof:

We know that U can be written as a union of open intervals (because each x Î U is in 

some open interval I with I Ì U). What we need to show is that U is a union of disjoint 

open intervals (such a union must be countable(to see why, check exercise 2.15 on 

Carother’s)) . 

We first claim that each x Î U is contained in a maximal open interval Ix Ì U in the 

sense that if x Î I Ì U , where I is an open interval, then we must have I Ì Ix. Indeed, 

given x Î U, let 

       ax = inf 8a : Ha, xD Ì U<     and     bx = sup 8b : @x, bM Ì U= .

Then, Ix = Hax, bxL satisfies x Î Ix Ì U, and Ix is clearly maximal. (Check this!) 

Next, notice that for any x, y Î U we have either Ix Ý Iy = Æ  or Ix = Iy. Why? Because if 

Ix Ý Iy ¹ Æ , then Ix Ü Iy is an open interval containing both Ix and Iy. By maximality we 

would then have Ix = Iy. It follows then that U is the union of disjoint (maximal) inter-

vals: U = Ü
xÎU

Ix . à

Now any time we make up a new definition in a metric space setting, it is usually very 

helpful to find an equivalent version stated exclusively in terms of sequences. To moti-

vate this in the particular case of open sets, let’s recall:

           xn Ì x � 8xn< is eventually in BΕHxL for any Ε > 0

and hence

            xn Ì x � 8xn< is eventually in U, for any open set U containing x .

This last statements essentially characterizes open sets:

• Theorem:

A set U in HM , dL is open iff, whenever a sequence 8xn<
n=1
¥  in M  converges to a point 

x Î U, we have xn Î U for all but finitely many n. 

Proof:

The forward implication is clear from the remarks preceding the theorem. Let’s see why 

the new condition implies that U is open:

If U is not open , then there is an x Î U such that BΕHxL Ý Uc ¹ Æ for all ¶ > 0. In particu-

lar , for each n there is some xn Î B1�nHxL Ý Uc. But then 8xn<
n=1
¥ Ì Uc and xn Ì x. Thus, 

the new condition also fails.(ÞÜ) à

In slightly different language, the above theorem is saying that the only way to reach a 

member of an open set is by traveling well inside the set; there are no inhabitants on the 

“frontier.” In essence, you cannot visit a single resident without seeing a whole neighbor-

hood!

  CLOSED SETS

Definition: A set F in a metric space HM , dL is said to be a closed set if its complement 

Fc = M\F is open. 

We can draw several immediate (although not terribly enlightening) conclusions:

Example:  

a) Ø  and M  are always closed. (This means that it is possible for a set to be both open 

and closed!) 

b) An arbitrary intersection of closed sets is closed. A finite union of closed sets is closed.

c) Any finite set is closed. Indeed, it is enough to show that 8x< is always closed. (Why?) 

Given any y Î M\8x< (that is, any y ¹ x), note that ¶ = dHx, yL > 0, and hence 

BΕH yL Ì M\8x<. 

d) In R, each of the intervals @a, bD, @a, ¥L, and H-¥, bD is closed. Also, N and D (the Can-

tor set, which we’ll study very soon) are closed sets. (Why?) 

e) In a discrete space, every subset is closed.

f) Sets are not “doors”! For instance, H0, 1D is neither open nor closed in R! (What??)

Ù

As yet, our definition is not terribly useful. It would be nice if we had an intrinsic charac-

terization of closed sets (something that did not depend on a knowledge of open sets), 

something in terms of sequences, for example. For this let’s first make an observation: F 

is closed iff Fc is open.

So F is closed iff

          x Î Fc � BΕHxL Ì Fc     for some Ε > 0 .

But this is the same as saying: F is closed iff

        BΕHxL Ý F ¹ Æ   for every Ε > 0 � x Î F .

        

This is our first characterization of closed sets. Intuitively speaking, closed sets are like 

blobs from a 60’s horror movie. A closed set will devour all points that reside in arbitrary 

proximity to the set.

                      

In order to better understand the nature of these “predatory” sets, let’s bring in a few 

definitions.

Definition: Let A be a subset of M . A point x Î M  is called a limit point of A if every 

neighborhood of x contains a point of A that is different from x itself, that is, if 

HBΕHxL\8x<L Ý A ¹ Æ  for any Ε > 0.

Example:  

a) Suppose you place a sugar cube, a cherry, and a queen-ant around an ant nest. Several 

moments later you take a snapshot of the event that ensues:

                

If we let A be the set of all ants in the picture, then the sugar cube, the cherry, and the 

queen-ant are all limit points of A (assuming that infinitely many ants cluster tighter and 

tighter around each object). Notice that s (sugar) and c (cherry) are not members of A, 

whereas Q Î A.

b) Let A = 8xn<
n=1
¥ Ì M  and suppose xn Ì

d

x Î M . Then x is the only limit point of A.

Note however, that a non-convergent sequence can have a huge number of limit points. 

For instance, let Q be arranged into a sequence 8rn<
n=1
¥ . Then every point of R is a limit 

point of Q. Ù

Definition: A set F is a closed set iff it contains all of its limits points.

Example:  

Let Z be the set of all zombies. Is Z a closed set?

Solution:

To answer this question, we must decide whether Z contains all of its limit points. To 

put this problem in “life or death” terms, suppose x is a limit point of Z. Then, would 

you shoot x with your sniper rifle?

               

If the concentric circles of the sniper scope never present the target in isolation, that is, 

if the heads of other zombies are always present within each target’s circle (no matter 

how small it is), then the target is a limit point of zombies. It will inevitably be “in con-

tact” with the living dead and therefore become a zombie (if it is not already a zombie). 

Therefore it appears that Z is a closed set (and that shooting the target might be the 

most humane course of action). Ù

Notice that the characterization of closed sets in terms of limit points can readily be 

translated into a sequential description. To see why, suppose x is a limit point of some 

set F. Then, by definition, BΕHxL Ý F ¹ Æ for every Ε > 0. But this means that for each 

1 � n, we can find some xn Î B1�nHxL Ý F. 

Thus, the sequence 8xn<
n=1
¥ Ì F converges to x. In other words, any limit point of F is 

necessarily a point of convergence of some sequence of elements of F.

This means that F is closed iff every sequence 8xn<
n=1
¥  that consists of elements of F and 

converges in M É F, must actually converge to an element of F.

We summarize our results in the following theorem:

• Theorem:

Given a set F in HM , dL, the following are equivalent: 

(i) F is closed; that is, Fc = M\F is open.

(ii) If BΕHxL Ý F ¹ Æ for every ¶ > 0, then x Î F. 

(iii) If a sequence 8xn<
n=1
¥ Ì F converges to some point x Î M , then x Î F.

Proof:

(i)�(ii): This is clear from our observations above and the definition of an open set. 

(ii)�(iii): Suppose that 8xn<
n=1
¥ Ì F and xn Ì

d

x Î M  . Then BΕHxL contains infinitely 

many xn for any ¶ > 0, and hence BΕHxL Ý F ¹ Æ for any ¶ > 0. Thus, x Î F by (ii).

(iii)�(ii): If BΕHxL Ý F ¹ Æ for all ¶ > 0, then for each n there is an xn Î B1�nHxL Ý F. The 

sequence 8xn<
n=1
¥  satisfies 8xn<

n=1
¥ Ì F and xn Ì x. Hence, x Î F by (iii).      à

Note: Most authors take (iii) as the definition of a closed set . In other words, condition 

(iii) says that a closed set must contain all of its limit points. That is, “closed” means 

closed under the operation of taking of limits.

Now, as we’ve seen, some sets are neither open nor closed. However, it is possible to 

describe the “open part” of a set and the “closure” of a set. Here’s what we’ll do: 

Definition: Given a set A in HM , dL, we define the interior of A, written intHAL or Ao, to 

be the largest open set contained in A. 

That is,

          

Note that Ao is clearly an open subset of A. 

We next define the closure of A, written clHAL or A , to be the smallest closed set contain-

ing A. That is, 

    clHAL = A = Ý8F : F is closed and A Ì F< .

Please take note of the “dual” nature of our two new definitions. Now it is clear that A is 

a closed set containing A (and necessarily the smallest one). But it’s not so clear which 

points are in A or, more precisely, which points are in A\A. 

We could use a description of A that is a little easier to “test” on a given set A. It follows 

from our last theorem that x Î A iff  BΕHxL Ý A ¹ Æ for every ¶ > 0. The description that 

we are looking for simply removes this last reference to A.

• Proposition:

x Î A iff BΕHxL Ý A ¹ Æ for every ¶ > 0. 

Proof:

(Ü)

If BΕHxL Ý A ¹ Æ for every ¶ > 0, then BΕHxL Ý A ¹ Æ for every ¶ > 0 (since A Ì A), and 

hence x Î A (since closed sets contain their limit points) . 

(Þ)

Now let x Î A and let ¶ > 0. If BΕHxL Ý A = Æ, then A is a subset of HBΕHxLLc, a closed set. 

Thus, A Ì BΕHHxLLc. (Why?) But this is a contradiction, because x Î A while x Ï HBΕHxLLc.(Þ

Ü) à

• Corollary:

x Î A iff there is a sequence 8xn<
n=1
¥ Ì A with xn Ì x.

That is, A is the set of all limits of convergent sequences in A (including limits of con-

stant sequences).

Example:

In HR,   × ¤L:

a)  intHH0, 1DL = H0, 1L       and      clHH0, 1DL = @0, 1D

b)  intJ: 1

n
>

n=1

¥

N = Æ          and      clJ: 1

n
>

n=1

¥

N = : 1

n
>

n=1

¥

Ü 80<

c)  intHQL = Æ                   and      clHQL = R Ù
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